Thank you for joining us.

WE WILL BEGIN SHORTLY.

Northeast Ohio Regional Sewer District

Watershed Advisory Committee

CUYAHOGA RIVER NORTH | OCTOBER 5, 2021

Agenda

- Welcome, Introduction & Updates
- Plum Creek Fish Relocation Feature
- Strategic Support Update
- Master Planning Update
- Inspection and Maintenance Update
- Design & Construction Update
- Looking Ahead

Northeast Ohio Regional Sewer District

Program Highlights

Frank Greenland, Director of Watershed Programs

Matt Scharver, Deputy Director of Watershed Programs

Community Cost-Share: 2021 CCS fund balance (8/31/21) \$32,489,369 CCS funds available \$22,478,882

Year	CCS Spent
2016	\$72,190
2017	\$2,626,418
2018	\$4,218,308
2019	\$9,178,445
2020	\$6,940,369
2021 (9/30/21)	\$7,937,863
Total	\$30,973,593

Local Sewer System Evaluation Studies (LSSES)

Northeast Ohio Regional Sewer District

Stormwater Fee Credit Policy Manual Draft updates affecting commercial, industrial and HOA properties

1. Quantity – Peak Flow credits can be applied to impervious areas that cannot physically be conveyed to an SCM, provided that SCM accounts for these areas via over-detention.

Stormwater Fee Credit Policy Manual Draft updates affecting commercial, industrial and HOA properties

2. Facilities identified within an MS4's current Stormwater Management Program, as part of a valid MS4 NPDES permit, may be eligible to receive a Stormwater Quality Credit of 25% (Example: parking lot adjacent to City Macedonia's rec center).

Stormwater Fee Credit Policy Manual Draft updates affecting commercial, industrial and HOA properties

- 3. Credit eligibility will require an applicant to at least have partial/shared maintenance responsibilities for an SCM.
- 4. An expedited credit application process for SCMs funded via the District's GIG Program
- 5. Credit renewal dates limited to May 1st thru December 31st to ensure required SCM inspections can be completed during favorable weather conditions.
 - Example: A new Quantity or Quality credit approved on February 17, 2022, will have an initial annual renewal date of May 1, 2023 (and every month of May thereafter).
- 6. Various administrative updates to provide additional clarification.

Northeast Ohio Regional Sewer District

purposes only. The Northeast Ohio Regional Sewer District (NEORSD) makes no warranties, expressed or implied, with

Northeast Ohio Regional Sewer District

New mark, same message.

PLEASE NOTE OUR UPDATED LOGO FOR YOUR PROJECTS.

Questions

Northeast Ohio Regional Sewer District

FEATURE PRESENTATION Justin Telep

Plum Creek fish translocation to support biological attainment

Justin Telep WQIS Environmental Compliance Inspector

Northeast Ohio Regional Sewer District

Background

- Headwater stream tributary to the W. Branch of the Rocky River in Olmsted Falls and Columbia Township.
 - 3.6 miles long within NEORSD service area
- Watershed characteristics:
 - Drainage Area ~ 18 sq. mi.
 - 26.8% forested
 - 20.3% urban/developed land
 - 4.0% impervious surface

Source: StreamStats & National Land Cover Dataset, 2011

Background

- Ohio EPA Biocriteria framework:
 - Biological: Fish (IBI) and Macroinvertebrate (ICI)
 - Physical: QHEI
 - Chemical: Aquatic life use WQS
- Impaired since its first Ohio EPA bioassessment in 1981
 - Gross organic enrichment and poor chemical water quality (prior to 1990s)
 - Nutrient enrichment (early 2000s)
 - Natural sources (current)

assessed/ agency	River Mile	IBI	ICIa	QHEI	Status	Causes	Sources	ALU WQS Exceedances
2020 (NEORSD)	2.84	<u>24</u> *	28	60.25	NON			
2020 (NEORSD)	2.84	<u>26</u> *	20	09.25	11011			
2019 (NEORSD)	2.84	30*	26*/F*	70.0	NON	Natural (fish passage)	HS Urban runoff	E. coli
2019 (NEORSD)	2.84	<u>26</u> *				Flow regime alterations	Physical barrier (Plum Creek Gorge)	
2014 (EPA)	8.50	<u>22</u> *	$\mathrm{M}\mathrm{G}^{\mathrm{ns}}$	51.5	NON	Low DO Habitat alterations	Natural sources (rheopalustrine) channelization	Dissolved oxygen Iron
2014 (EPA)	4.92	<u>24</u> *	$\mathrm{MG}^{\mathrm{ns}}$	65.0	NON	Low DO Habitat alterations	Natural sources (rheopalustrine) Channelization	Dissolved oxygen Iron
2014 (EPA)	2.50	<u>20</u> *	$\mathrm{MG}^{\mathrm{ns}}$	69.75	NON	Natural (fish passage) Other flow regime alterations	Natural sources (Plum Cr. Gorge) Urban runoff/storm sewers	No water chemistry sampled
2014 (EPA)	0.25	<u>20</u> *	$\mathrm{M}\mathrm{G}^{\mathrm{ns}}$	69.50	NON	Natural (fish passage) Other flow regime alterations	Natural sources (Plum Cr. Gorge) Urban runoff/ storm sewers	<i>E. coli</i> Lead
2012 (NEORSD)	2.90	<u>22</u> *	24*	70.75	NON	Low DO Natural (fish passage) Other flow regime alterations	HSTS Urban runoff Physical barrier (Plum Creek Gorge)	<i>E. coli</i> Dissolved oxygen
2012 (NEORSD)	0.30	<u>16*</u>	18*	64.25	NON	Natural (fish passage) Other flow regime alterations	HSTS Urban runoff Physical barrier (Plum Creek Gorge)	E. coli
2001 (EPA)	2.8	<u>22</u> *		71.5	NON			
2001 (EPA) 1997 (EPA)	2.8	<u>18</u> *	MG ^{ns}	71.5	NON	Nutrient enrichment Organic enrichment	N/A	Fecal coliform
1997 (EPA)	0.1/0.2	<u>18</u> *	F*	70.5	NON	Nutrient enrichment Organic enrichment	Small POTWs Unsewered areas, construction runoff, polluted stormwater	Fecal coliform Lead (OMZA)
1992 (EPA)	0.3	<u>18</u> *	F*	43.5	NON	Organic enrichment Oxygen depletion Habitat limitations	Small POTWs (Brentwood WWTP and Western Utility WWTP)	Dissolved Oxygen (chronic), Fecal coliform
1981 (EPA)	8.5	<u>22</u> *		50	NON			
1981 (EPA)	0.25	18*		55.5	NON			

affected by slow current velocity (E=Exceptional; G=Good; MG=Marginally good; F=Fair; P=Poor; VP=Very poor)

Plum Creek Water Quality Improvements

- Organic Enrichment
 - Brentwood, Western Ohio Utility, and ODOT Park 3-39 WWTPs abandoned in 1997 with flows redirected to NEORSD SWI.
 - Eliminated 0.55+ MGD

REGIONAL

STORMWATER

MANAGEMENT

- One remaining: Plum Creek WWTP average design flow
 0.04 MGD
- Nutrient Enrichment
 - Nutrient based TMDL developed in 2001 for Plum Creek
 - 2019 & 2020 NEORSD monitoring demonstrates Plum Creek is meeting all nutrient TMDL target criteria

Northeast Ohio Regional Sewer District

Watershed Water Quality Improvements

REGIONAL STORMWATER MANAGEMENT

★ 9 decommissioned WWTPs now tributary to NEORSD SWI

Source: Ohio EPA, 2020. Biological and Water Quality Study of the Rocky River and Selected Tributaries Sapling Years 2014-2015

Plum Creek Macroinvertebrate Community Trends

Macroinvertebrate community **in attainment** 5 of last 6 assessments dating back to 2014.

Aerial dispersion in adult life form

Northeast REGIONAL Ohio Regional STORMWATER Sewer District MANAGEMENT

Sewer District MANAGEMENT

Plum Creek Gorge

- The natural barriers at the Plum Creek Gorge prevent fish migration upstream
- "Potentially eligible for an aquatic life use redesignation to a lower water quality goal" (Ohio EPA 2020 Rocky River Water Quality Report).
 - Lower water quality protection for Plum Creek
 - Dissolve oxygen standards
 - Habitat goals

Proposed Project

- EPA proposed in their 2020 report:
 - "A seeding of upper Plum Creek with a representative collection of headwater fish species from adjacent waters within the basin should be considered. If successful, this will contribute to ALU restoration and eliminate the need to lower its water quality goal."
- This project aligns with the Water Quality and Resource Management focus area in the NEORSD Strategic Plan: <u>Identify opportunities to drive water quality protection and</u> <u>enhancement</u>.
- We have already helped solve numerous water quality issues
 - Free fish migration is hindering its potential to achieve full biological attainment

Northeast Ohio Regional Sewer District

REGIONAL STORMWATER

MANAGEMENT

Species Selection

- After a full literature review, a list of 9 candidate species were selected based on:
 - Never been collected in Plum Creek
 - Found in abundance in adjacent waters to Plum Creek
 - Fish that would have likely migrated into Plum Creek
 - Ability to increase IBI score
 - Spawning and habitat preferences are available in Plum Creek
 - Are typical species found in other W. Branch headwater streams

Table 2. IBI Metrics and effect of species introduction										
	IBI metric	Northern hogsucker	Blacknose dace	Striped shiner	Silverjaw minnow	Sand shiner	Rainbow darter	Greenside darter	Blackside darter	Fantail darter
	Total sp.	+	+	+	+	+	+	+	+	+
Number of	Minnow sp.		+	+	+	+				
	Headwater sp.		+							+
	Sensitive sp.	+				+	+	+		
	Darter sp.						+	+	+	+
	Simple lithophil sp.	+	+	+			+	+	+	
	Tolerants	+	-	+	+	+	+	+	+	+
	Omnivores	+	+	+	+	+	+	+	+	+
tent of	Pioneering sp.	+	+	+	+	+	+	+	+	+
Perc	Insectivores	+	-	+	+	+	+	+	+	+
	DELTs									
Rel. No.** + - + + + + +								+	+	
Positive effect on IBI metric (+) Negative effect on IBI metric (-) *Based on historical scores, drainage area, habitat, reproductive needs, and Best Professional Judgement **per 0.30 km, minus tolerant and hybrid species										

Sampling Plan

- All source locations within the Rocky River watershed
- Goal: minimum of 200 fish/species/year into Plum Creek at two seed locations
- Minimum of 3 consecutive years of translocation
 - Reduces environmental variability of a bad spawning/weather year
 - Increases genetic diversity

REGIONAL STORMWATER

MANAGEMENT

Northeast

Ohio Regional Sewer District

- Increases number of fish introduced and chance of success
- Translocate in the spring before fish spawn
- Tag every fish with a visual implant elastomer
- Perform a fall sampling to determine survivability

Plum Creek seed/translocation locations

Visual Implant Elastomer

- Tagging fish benefits:
 - Color coded by year
 - Determine long-term or multi-year survivability success
 - Determine recruitment (successful spawn) immediately upon fall sampling of Plum Creek
 - Document movement throughout the stream

Year one progress

- Started sampling this spring in March, when darters prepare to spawn
- Partner agencies:
 - Brian Zimmerman, OSU Museum of Biological Diversity and Co-Author "A Naturalist's Guide to the Fishes of Ohio"
 - Ohio State University Stream & River Ecology Lab Students
 - Approval and support from:
 - Ohio EPA Ecological Assessment Section
 - ODNR Division of Wildlife
 - Cleveland Metroparks

Brian Zimmerman and OSU students assisting in seine netting; Rocky River West Branch at SR 82

Year one progress

Species	#
Northern hogsucker	4
Blacknose dace	500
Striped shiner	263
Silverjaw minnow	56
Sand shiner	1,170
Rainbow darter	929
Greenside darter	256
Blackside darter	3
Fantail darter	186

As of 5/13/2021, we have tagged and translocated 3,367 fish into Plum Creek

Post sampling and overall goals

- Goal: to achieve full biological attainment
 - Eliminate the need for an aquatic life use redesignation to a lower water quality goal
- Enhance water quality and drive protection of Plum Creek

Northeast

Ohio Regional

Sewer District

REGIONAL

STORMWATER

MANAGEMENT

		Table 7. IBI Metrics and effect of species introduction										
•		IBI metric	9/4/2020 Bioassessment	Simulated Bioassessment with new species	Approximate metric criteria for increased score	Achievable rank 1-12 (1=best)*						
		Total sp.	8(1)	17(5)	17 sp. for a 5	3						
		Minnow sp.	1(1)	7(5)	7 sp. for a 5	6						
	er of	Headwater sp.	0(1)	2(3)	2 sp. for a 3	1						
	lmb	Sensitive sp.	0(1)	4(3)	4 sp. for a 3	7						
	Nu	Darter sp.	1(1)	5(5)	3 sp. for a 3	4						
		Simple lithophil sp.	1(1)	7(5)	4 sp. for a 3	5						
		Tolerant sp.	59.8(1)	53.1(3)	<33% for 5 <56% for 3	2						
	<u></u>	Omnivores	17.7(5)	15.5(5)	<16% for 5							
	cent of	Pioneering sp.	69.2(1)	61.1(1)	<30% for 5 <55% for 3	9						
	Perc	Insectivores	15.3(3)	25.1(3)	>22% for 3 >44% for 5	8						
		DELTs 0.5(3)		0.4(3)	$\leq 0.1 \text{ for } 5$ $\leq 0.30 \text{ for } 3$	10						
	Rel.	No.**	876(5)	1168(5)	>750 for 5							
'OS	IBI 9	score (<i>narrative</i>)	22 (Poor)	46 (Very Good)								
nces	Metr *Bas	ric total (metric score sed on historical scor	1, 3, or 5) es, drainage area, h	abitat, reproductive	needs, and best prof	essional						
li	judgement **Relative number per 0.30 km, minus tolerant and hybrid species											

Other impaired streams affected by fish barriers:

- Abram Creek: low head dam and Cleveland Hopkins Airport enclosure and drop structure
- Beechers Brook: Dam at Mayfield Village bank stabilization project upstream of Som Center Road
- Big Creek: John Nagy cascade
- Blodget Creek: Box culvert under Ohio Turnpike
- Brandywine Creek: Brandywine Falls at RM 1.95
- Mill Creek upstream of Mill Creek Falls

Questions/ comments?

Justin Telep Telepj@neorsd.org Environmental Compliance Inspector WQIS

Stormwater Strategic Support

Using Rainfall and Monitoring Data to Support Urgent Storm Event Field Response and Post-Storm Event Data Analysis

The District has been developing and refining an Urgent Storm Response Program.

Rainfall and monitoring data are collected and analyzed to help identify and prioritize potential flooding/debris problems for field response.

Rainfall:

 Rain Gauges, Gauge Adjusted Radar Rainfall (GARR)

Flood Stages:

• Level Sensors and Flow Monitors

Flooding/Debris/Erosion:

• Trail Cams

District RG Data is Evaluated to Determine Locations Recording High Intensity or Heavy Rainfall

	Peak	Peak	Peak	Peak	Peak 1-				Peak 12-	Peak 24-	Peak 48-
	5min	10min	15min	30min	hr	Peak 2-hr	Peak 3-hr	Peak 6-hr	hr	hr	hr
Rain Gage	in	in	in	in	in	in	in	in	in	in	in
Beachwood .Tips (in)	2-mo	2-mo	2-mo	4-mo	9-mo	1-yr	1-yr	9-mo	6-mo	4-mo	4-mo
Brecksville.Tips (in)	<2-mo	<2-mo	<2-mo	<2-mo	<2-mo	<2-mo	3-mo	3-mo	2-mo	2-mo	2-mo
Brook Park.Tips (in)	<2-mo	<2-mo	<2-mo	2-mo	3-mo	4-mo	6-mo	6-mo	2-yr	1-yr	9-mo
Dille Ave PS.Tips (in)	4-mo	4-mo	6-mo	4-mo	4-mo	1-yr	1-yr	1-yr	2-yr	1-yr	9-mo
Division Ave PS.Tips (in)	<2-mo	<2-mo	<2-mo	2-mo	2-mo	6-mo	6-mo	6-mo	1-yr	1-yr	6-mo
Easterly WWTP.Tips (in)	<2-mo	<2-mo	2-mo	2-mo	3-mo	1-yr	2-yr	2-yr	5-yr	2-yr	2-yr
Independence.Tips (in)	2-mo	<2-mo	<2-mo	2-mo	3-mo	4-mo	6-mo	6-mo	6-mo	4-mo	4-mo
Cleveland Industrial Pkwy.Tips (in)	<2-mo	<2-mo	<2-mo	<2-mo	2-mo	3-mo	4-mo	6-mo	1-yr	1-yr	9-mo
James Rhodes HS.Tips (in)	<2-mo	<2-mo	<2-mo	2-mo	3-mo	4-mo	4-mo	6-mo	1-yr	9-mo	6-mo
Jennings PS.Tips (in)	3-mo	3-mo	4-mo	4-mo	4-mo	1-yr	1-yr	1-yr	2-yr	1-yr	1-yr
Macedonia.Tips (in)	<2-mo	<2-mo	<2-mo	<2-mo	2-mo	2-mo	3-mo	2-mo	<2-mo	<2-mo	<2-mo
Maple Heights .Tips (in)	<2-mo	<2-mo	2-mo	3-mo	3-mo	6-mo	1-yr	6-mo	4-mo	4-mo	3-mo
Mary Street PS	4-mo	3-mo	4-mo	3-mo	4-mo	9-mo	1-yr	1-yr	2-yr	1-yr	9-mo
Mayfield Heights.Tips (in)	9-mo	9-mo	9-mo	1-yr	2-yr	2-yr	2-yr	1-yr	1-yr	6-mo	6-mo
Moreland Hills.Tips (in)	<2-mo	<2-mo	<2-mo	<2-mo	<2-mo	2-mo	2-mo	<2-mo	<2-mo	<2-mo	<2-mo
North Olmsted.Tips (in)	<2-mo	<2-mo	<2-mo	<2-mo	2-mo	6-mo	6-mo	1-yr	2-yr	2-yr	1-yr
North Royalton.Tips (in)	4-mo	3-mo	4-mo	6-mo	9-mo	9-mo	1-yr	1-yr	6-mo	6-mo	6-mo
Oakwood.Tips (in)	<2-mo	<2-mo	<2-mo	3-mo	4-mo	4-mo	4-mo	4-mo	2-mo	2-mo	2-mo
Olmsted Falls.Tips (in)	<2-mo	<2-mo	<2-mo	2-mo	4-mo	9-mo	1-yr	1-yr	2-yr	2-yr	1-yr
Parma.Tips (in)	2-mo	<2-mo	<2-mo	3-mo	3-mo	4-mo	6-mo	6-mo	1-yr	6-mo	6-mo
Richfield.Tips (in)	<2-mo	<2-mo	<2-mo	<2-mo	<2-mo	<2-mo	<2-mo	<2-mo	<2-mo	<2-mo	<2-mo
Shaker Heights.Tips (in)	4-mo	3-mo	3-mo	2-mo	2-mo	6-mo	1-yr	9-mo	6-mo	4-mo	4-mo
South Euclid.Tips (in)	3-mo	3-mo	4-mo	6-mo	1-yr	2-yr	2-yr	2-yr	1-yr	1-yr	9-mo
Southerly WWTC.Tips (in)	4-mo	4-mo	6-mo	6-mo	4-mo	9-mo	1-yr	1-yr	6-mo	6-mo	4-mo
Strongsville C WWTP.Tips (in)	<2-mo	<2-mo	<2-mo	3-mo	4-mo	6-mo	6-mo	6-mo	2-yr	1-yr	1-yr
Strongsville Foltz.Tips (in)	<2-mo	<2-mo	<2-mo	2-mo	3-mo	6-mo	6-mo	9-mo	1-yr	1-yr	9-mo
University Hts	1-yr	9-mo	9-mo	9-mo	1-yr	2-yr	2-yr	2-yr	1-yr	1-yr	9-mo
Wade Park.Tips (in)	6-mo	9-mo	9-mo	9-mo	9-mo	2-yr	2-yr	2-yr	2-yr	2-yr	1-yr
Westlake.Tips (in)	<2-mo	<2-mo	<2-mo	<2-mo	2-mo	6-mo	1-yr	1-yr	5-yr	5-yr	2-yr

GARR Data is Evaluated to Support Additional Rainfall Spatial Analysis

The District reviews GARR Data for a range of rainfall durations to identify recurrence intervals.

Pockets of High Intensity or Heavy Rainfall are evaluated further using other data sources.

For larger storms, the District collects Radar Rainfall videos to better understand the overall storm event (formation, direction, speed, intensity, coverage).

REGIONAL

STORMWATER

MANAGEMENT

Northeast

Ohio Regional

Sewer District

Stream Monitors are Reviewed for Evidence of Potential Flooding to Support Field Response

 The District is working to assign the four NWSequivalent Flood Stages to any District or USGS monitor within the SWSA:

- Action
- Minor Flooding
- Moderate
 Flooding
- Major Flooding

Northeast
Ohio Regional
Sewer District

	7/12/21 Data	Current	Current NWS Flood	Peak	Peak NWS Flood	Action	Minor	Moderate	Major
Type 7	Stream Monitor	Stage	Status	Stage	Status	Stage	Flood	Flood	Flood
Type			Bolow		Rolow				
USGS	Big Creek at Cleveland	3.5	Action	7.6	Action	9	11	12	13
			Below		Below				
USGS	Brandywine Creek near Macedonia	3.6	Action	6.7	Action	12	13	14	15
			Below		Below				
USGS	Chagrin River at Willoughby	5.6	Action	7.1	Action	9	12	14	16
			Below		Below				
USGS	Cuyahoga River at Hiram Rapids	2.9	Action	2.9	Action	5	7	8	12
			Below		Below				
USGS	Cuyahoga River at Independence	7.6	Action	13.0	Action	14	1/	18.5	21
119/29	Cuvabosa Biyer at laite	5.6	Below	97	Below	11	n/=	n/a	n/a
0303		5.0	Relew	2.1	Relew		1/4	1/4	nya
USGS	Cuavhoga River at Old Portage	5.0	Action	8.6	Action	9	10.5	13	18
			Below		Below				
USGS	Indian Creek near Macedonia	1.7	Action	6.3	Action	8.5	9.5	10	12
			Below		Below				
USGS	Mill Creek at Garfield Pkwy at Garfield Heights	1.7	Action	5.1	Action	7	7.5	10	12
USGS	Plum Creek near Olmsted Falls	7.8	Action	7.9	Action	5.5	8	11	14
			Below		Below				
USGS	Rocky River near Berea	9.3	Action	10.8	Action	11.5	18	20	22
	The one has been the state		Below		Below	-			,
USGS	linkers Greek at Bedford	3./	Action	5.9	Action	/	9.5	12	n/a
USGS	West Branch Rocky River at West View	13.3	Action	14.3	Action	13	17.5	21	5
			Below		Below				
USGS	West Creek at Ridgewood Road at Parma	5.0	Action	77	Action	8	10	14	16

Trail Cams are Reviewed to Identify Potential Stormwater Issues for Field Response

Airport Debris Rack

Lakeview Dam

REGIONAL

STORMWATER

MANAGEMENT

Post-Storm Event Analysis:

Objective: Use Collected Data to Better Understand What Happened and Why to Support Planned Projects and Future Urgent Storm Responses

Data Sources:

- District Rain Gauge Data
- GARR Rainfall Data
- Monitoring Data
- Sediment/Debris Accumulation
- Field Observations
- Customer/Media Reports

Data Analysis:

- Rainfall Statistics (e.g., 10-year 2-hr)
- Comparing H/H Model-Predicted Flooding to Actual Flooding
- Comparing Historical Storms for Potential Correlations (Flooding, Debris Accumulation)

Extending the RSMP Stormwater Models to Support Resolving Local Flooding Issues

The District currently manages over 40 stormwater hydrologic & hydraulic models across the SWSA to reflect existing conditions and recommended alternatives.

Upon request, the District stormwater models can be provided to support local stormwater evaluations.

At times, the District assists with evaluating local flooding issues that may provide benefit along the RSS.

Brook Park: Kolleda "Ditch" Tributary Flooding

The City of Brook Park requested District assistance to mitigate local flooding along Kolleda Ditch.

The City of Brook Park was heavily developed during the post World War II era (1950s and 60s). The Kolleda "Ditch" drainage area is approximately 4 square miles and includes over 2-miles of impervious area (53% impervious).

Very few stormwater control measures (SCMs) exist to manage stormwater runoff. Most of the streams have been culverted.

Existing storm sewers are primarily from their original construction (1950s & 60s), are common trench (MH separated), undersized compared to today's standards, and near the end of their useful life.

Brook Park: 1951

Brook Park: 1979

Ohio's Population and Stormwater Management Regulations by Decade

Stormwater Model Updates to Support Local Flooding Evaluation

The CRN SWMP model was extended from the RSS into the Local Storm Sewer System (LSS). Hydrologic catchments were also refined as part of the model extension.

The model extension allows for:

- Better understanding of the LSS flooding problems
- Potential RSS influence on LSS flooding problems
- Identifying potential opportunities to mitigate flooding at the local level
- Identifying potential RSS benefit from local solutions.

Model Parameters	CRN SWMP Model	Updated CRN SWMP Model (LSS Extensions)
Modeled Catchments	76	1,023
Average Catchment Size (acres)	33	2.5
Modeled Conduits	222	1,119
Total Conduit Length (feet)	53,367	249,522

CRN SWMP Model: Catchments

Updated CRN SWMP Model: Catchments

Northeast Ohio Regional Sewer District

CRN SWMP Hydraulic Model

Updated Hydraulic Model with LSS Extensions

Northeast Ohio Regional Sewer District

Storage Alternatives Being Consider

Storage Type	Application	Limitations
Conventional: In-line Basin	Enough elevation difference to allow ponding	Flat areas with upstream connections
Conventional: Off-line Basin	Where stormwater can be diverted, storage, and released at a different location	Limited areas within built-out communities; streams with little to no floodplain width.
Decentralized: Underground Storage, Bioswales	High impervious areas, locations with limited space, Public ROW, flat areas without conventional storage opportunities	Some locations will require private property owner buy-in; Increases the number of SCMs requiring O&M

Questions

RSS Upstream Extent of Kolleda Ditch

Northeast Ohio Regional Sewer District

Cuyahoga River North Stormwater Master Plan

70+ Problem Areas with planning level recommendations nominated to SW Construction Plan

~\$544 Million in construction costs

Community Reports distributed in 2020

Cuyahoga River Stormwater Master Plan Design & Construction Phase

Projects initiated based on SW Master Plan recommendations:

- Big Creek Flood Reduction near Sprague Road (BC-NR-02) Construction 2022
- Big Creek Stream Restoration Upstream and Downstream of Ridge Rd (BC-PA-03) In Design

 Big Creek Phase 1 SWMP Project Area 7 - Ridgewood Basins in Parma (BC-PA-07) - Construction 2022

REGIONAL

STORMWATER

MANAGEMENT

Advanced Stormwater Planning

Northeast Ohio Regional Sewer District

ASP: Problem Area BC PA 07

- SWMP Recommended Alternative:
 - 20+ project components
 - Estimated at \$36,148,000
- ASP Objectives:
 - Break apart alternative, package components & orchestrate defined sequence
 - Include Upper Ridgewood improvements and benefits
 - Review/consider LOS goals to maximize benefit vs. costs

ASP: Problem Area BCPA07

- Six Project Phases
- Baseline Upper Ridgewood
- Stearns Farm Detention Basin and LSS Diversion
- Lalemant Drive to Upper Ridgewood Conveyance Improvements
- Stormwater Diversion near the Parma Pump Station
- Lower Ridgewood Retrofit
- Upper/Lower Twin Lakes

ASP: Problem Area BC PA 07

Recommended Sequence - Building and Transportation Reductions

	Inundated RSS Building Asset Count					Inundated RSS Transportation Asset Count								
Scenario	100-yr	50-yr	25- yr	10- yr	5-yr	2-yr	1-yr	100 -yr	50- yr	25-yr	10-yr	5-yr	2-yr	1-yr
	154	100	44	10	0	0	0	09	01	49	52	19	/	2
Baseline - Upper Ridgewood	93	34	19	9	1	0	0	67	56	49	35	14	5	2
Stearns Farm Detention Basin and LSS Diversion	71	24	10	3	0	0	0	65	53	48	24	7	1	2
Lalemant Drive to Upper Ridgewood Conveyance Improvements	72	20	7	0	0	0	0	58	42	35	17	6	1	2
Stormwater Diversion near the Parma Pump Station	42	18	8	0	0	0	0	39	19	19	11	5	1	2
Lower Ridgewood Retrofit	40	6	5	0	0	0	0	37	17	19	11	5	1	2
Upper/Lower Twin Lakes	39	12	5	2	0	0	0	37	19	19	13	5	1	2

Questions

Stormwater Inspection & Maintenance (SWIM)

- Inspection and Maintenance Update
- SWIM Demolition Services

Northeast Ohio Regional Sewer District

Completed SWIM Inspections 01/2021-09/2021

350 Total Inspections

- 248 SWIM Inspections
- 102 Responsible Party Benchmark Inspections

Northeast Ohio Regional Sewer District

Mill Creek, Garfield Heights

August 2021

Regular monitoring for the erosion adjacent to an apartment complex.

Broken sanitary pipe has exacerbated erosion and streamflow is entering the local sanitary sewer under the exposed storm sewer pipe.

Northeast Ohio Regional Sewer District

Big Creek, Parma Heights - Streambank erosion undermining the foundation of a strip mall.

SWIM 2021 Maintenance Program

Northeast Ohio Regional Sewer District

SWIM 2021 Maintenance Program

Cuvahoga River								
North Watershed	ational designation: Esri, Garmin, HERE, UNEP-WCMC,	Ave Mayle Ced Waday GEBC	persity DNDAA, increment P Corp.	Maintenance Projects				
Maintenance		B Haker Bill	Shaker Blvd	01/2021 - 09/2021				
Stow	Newburgh 15	Kinema B C C C	Harvard N ⁴⁵	Project Type	Projects (Count)	Debris Removed (CY)	Sediment Removed (CY)	
	Sklyn a Brooklyn Haidhte	Ren 10	Wantensville Heights Emery Rd Ford-Randall	Sediment & Debris	42	1,189	1,100	
	an for a part of a	Garfield Ger Rd bby Rd Heights Maple Heights	Rd Heights	Other	7	92	48	
Brook Park	Parma Seven Hills	Antonia -	1 52 "	Total	49	1,281	1,148	
Hiddleburg Heights	s INceptindence	Alexander Ra	edford Coavylod	Maintenance Type Other O Debris/Sediment	Removal Removal Cross Majo	im 🔊 waa b ing erted Stream ir Structure	Watersheds ict Stormwater Service Area	

Northeast Ohio Regional Sewer District

SWIM 2021 Maintenance Program

Mill Creek, Warrensville Heights - 1,000 Cubic Yards of sediment removed from Kerruish Basin.

SWIM Demolition Services Update

SWIM Demolition Services Update

Anticipated Expenditure: \$500,000

Estimated Contract Period: 2 years

Purpose: The purpose of this contract is to support the implementation of the Regional Stormwater Management Program through the demolition of structures on properties acquired for the completion of water resource projects along the Regional Stormwater System.

Demolition at Forest Overlook Drive, Seven Hills

Questions

Stormwater Design and Construction

REGIONAL STORMWATER MANAGEMENT Rocky River Tributary Stabilization & Re-Alignment, North Royalton

Stormwater Design

REGIONAL STORMWATER MANAGEMENT Stickney Creek Restoration - City of Brooklyn

Big Creek Flood Reduction near Sprague Road Cities of North Royalton and Parma

Project Goals:

- Upsize Sprague Road crossing to reduce roadway flooding
- Increase storage through floodplain expansion
- Daylight existing culvert
 Consultant: Biohabitats, Inc.
 Estimated Construction: \$940K
 Construction NTP: early 2022

Facts to Note:

- Fee simple land acquisition of 2 parcels
- Easements necessary on 4 parcels

Northeast Ohio Regional Sewer District

West Creek Stabilization Village of Brooklyn Heights

Project Goals:

- Reduce erosion risks
- Remove concrete flume and stabilize
 Provide fish passage through length
 Consultant: GPD Group, Inc.
 Estimated Construction: \$16.7M
 Construction NTP: 2022

Facts to Note:

- Easements required from all properties along work length
- Funding from USEPA (\$7M) and ODOT (\$2M) is secured

Pepper Luce Creek Culvert Replacement & Rehabilitation at Gates Mills Boulevard City of Pepper Pike

Project Goals:

- Rehabilitate and replace failing culverts
- Enlarge a detention basin to reduce flood risks to Gates Mills Blvd
 Consultant: Jacobs Engineering Group
 Estimated Construction: \$2.2M
 Construction NTP: 2nd Qrt 2022
 Facts to Note:
- City of Pepper Pike is utilizing Community Cost Share for the rehabilitation of the upstream culvert

Northeast Ohio Regional Sewer District
Mill Creek Culverted Streams Rehabilitation City of Garfield Heights

Project Goals:

- Rehabilitate several culverted stream assets in the Mill Creek Subwatershed
- Consultant: Brown and Caldwell Estimated Construction: \$1.5M Construction NTP: early 2023

Facts to Note:

• Daylighting alternative of MC00058 to be evaluated as alternative

Culverted Streams Rehabilitation District-wide

<u>Goals:</u>

- Rehabilitate/replace culverted streams to reduce risk of failure
- Daylight streams currently in culverts, if feasible, to open streams to floodplains and increase water quality
- Budget ~\$1.5M annually for rehab of these assets

Northeast
Ohio Regional
Sewer District

	А	В	С	D	
1	Rank	Asset	Material	SWIM Score	Notes
2	1	WB00084	CMP	4	Under the junkyard. Very poor condition. Milligan neigh
3	2	WB00173	RCP	5	Kollieda Ditch. Failure at the crown. Rest of pipe is "fair"
4	3	HC00053	CMP	4	Potential impact to Brecksville Road. Transitions to CMP
5	4	CH00175	CMP/RCP	5	Concrete has full depth spalling in the box. CMP with tot
6	5	BK00520	CMP	4	Compressed with open joint. Invert loss. Driveways imp
7	6	BD00296	CMP	4	Worse condition than BK00520 but in backyards. Not un
8	7	DE00015	CMP/RCP	4	Concrete with large voids in the invert. Past history of fai
9	8	PC00226	CMP/RCP	4	DS of Ursuline College. Ripped invert at the inlet. Perfor
10	9	EW00145	CMP	4	Invert with perforations. Previously lined. Potential imp
11	10	BC00037	CMP/RCP	4	Under multiple businesses. RCP with spalling and expose
12	11	DE00017	RCP	4	Holes in the concrete invert, missing brick, infiltration ru
13	12	DW00091	RCP	4	Sagging crown. Under driveway/local roadway.

Questions

Stormwater Construction

mmmm m

REGIONAL STORMWATER MANAGEMENT West Creek at Sandpiper Drive in the City of Parma

Rocky River Tributary Stabilization and Re-Alignment Along Ridge Road in City of North Royalton

Substantial Completion Anticipated September 2021

Contract Amount: \$438,471.10

Lineal Feet of Stream Work: 323'

Pepper Luce Creek Stabilization Near Lander Road

Substantial Completion Anticipated September 2021

Contract Amount: \$593,034.90

Lineal Feet of Stream Work: 575'

Questions

Northeast Ohio Regional Sewer District

WTL Contact

Donna Friedman 216.881.6600 Ext. 6768 friedmand@neorsd.org

Stormwater Program: Community Resources http://www.neorsd.org/communitystormwaterresources.php

