Level 3 Project Study Plan

2013 Doan Brook Environmental Monitoring

(1) Objectives

The objective of this study is to conduct environmental monitoring on Doan Brook as part of the Northeast Ohio Regional Sewer District (NEORSD) general watershed monitoring program. In addition, river mile (RM) 0.75 will be sampled as required by the Ohio Environmental Protection Agency (Ohio EPA) National Pollution Discharge Elimination System (NPDES) Permit No. 3PA00002*FD (1997). This sampling will be conducted by the NEORSD's Environmental Assessment group in the Water Quality and Industrial Surveillance Division (WQIS) and will occur from June 15 through September 30, 2013 (through October 15 for fish sampling assessments), as required in the OEPA *Biological Criteria for the Protection of Aquatic Life Volume III* (1987b)¹.

Stream monitoring activities will be conducted at each site by NEORSD Level 3 Qualified Data Collectors certified by Ohio EPA in Fish Community Biology, Benthic Macroinvertebrate Biology, Chemical Water Quality, and Stream Habitat Assessment. Fish and macroinvertebrate community health will be evaluated through the use of Ohio EPA's Index of Biotic Integrity (IBI), Modified Index of Well-Being (MIwb), and Invertebrate Community Index (ICI). An examination of the specific characteristics of the biological communities will be used in conjunction with water quality data, the NEORSD Macroinvertebrate Field Sheet, and Qualitative Habitat Evaluation Index (QHEI) results in order to identify impacts to the communities. Results will be compared to historic data to show temporal as well as spatial trends. Water chemistry data will also be compared to the Ohio Water Quality Standards to determine attainment of applicable uses (Ohio EPA, 2009b).

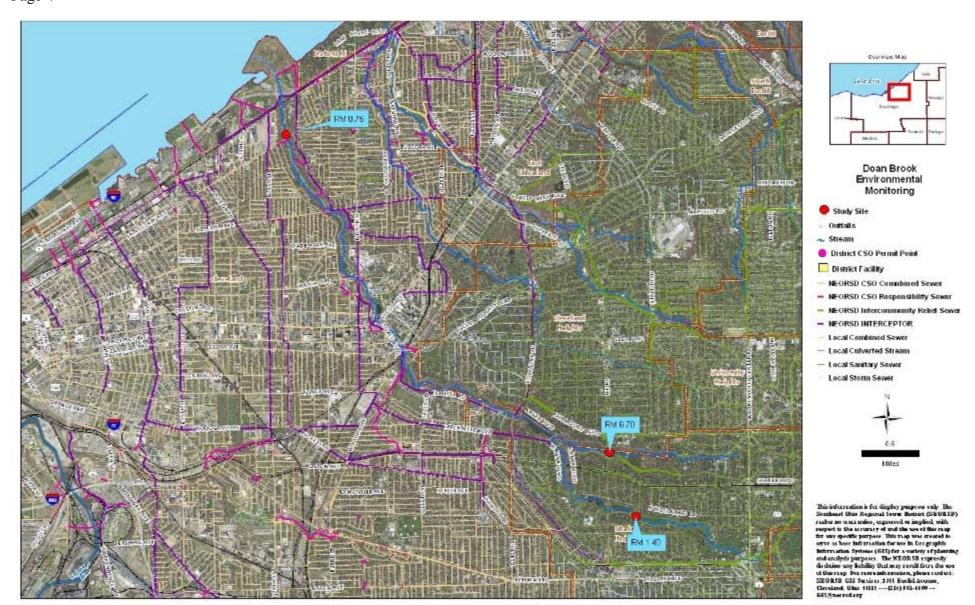
(2) Nonpoint/Point Sources

Point Sources	Nonpoint Sources
CSO(s) outside of NEORSD service area	Urban Runoff
Storm Sewer Outfalls	Landfill Leachate
Upstream Tributaries	Spills
Home Sewage Treatment Systems	Agriculture Runoff
NEORSD-owned CSOs	
Sanitary Sewer Overflows	

A map has been provided in Section 6 to show point sources that may be influencing the water quality at each sample location. These sources of pollution,

-

¹ See Appendix H for a list of all references.


along with the nonpoint sources listed in the table above, may be impacting the health of the fish and benthic macroinvertebrate communities.

(6) Sampling Locations

The following locations will be surveyed on Doan Brook during the 2013 field season for general watershed monitoring as outlined in this study plan. HD and water chemistry collection sites are located near the midpoint of each electrofishing zone, indicated by RM, unless otherwise noted. GPS coordinates are recorded at the downstream end of each electrofishing zone.

Site Location	Latitude	Longitude	River Mile	Description	HUC 8	Purpose
Doan Brook	41.5330°	-81.6296°	0.75	Downstream of St. Clair Avenue	Ashtabula- Chagrin 04110003	Evaluate chemistry, habitat, fish, & macroinvertebrates in support of Ohio EPA Permit #3PA00002*FD and watershed assessment
Doan Brook	41.4838°	-81.5643°	6.70	Upstream of Lee Road	Ashtabula- Chagrin 04110003	Evaluate chemistry, habitat, fish, & macroinvertebrates for watershed assessment
Doan Brook, North Branch	41.4739°	-81.5593°	1.40	Upstream of Attleboro Road	Ashtabula- Chagrin 04110003	Evaluate chemistry, habitat, fish, & macroinvertebrates for watershed assessment

2013 Doan Brook Environmental Monitoring June 12, 2013 Page 4

2013 Project Study Plans

(3) Parameters Covered

Fish specimens will be identified to species level, weighed, counted and examined for the presence of external anomalies including DELTs (deformities, eroded fins, lesions and tumors). An Ohio EPA Fish Data Sheet (Appendix A) will be completed during each assessment. Quantitative fish sampling is expected to be conducted at all locations.

Macroinvertebrate community assemblages will be collected from each location. Third Rock Consultants, LLC will identify and enumerate the specimens collected from each site. All specimens will be identified to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life*, *Volume III* (1987b)¹. The NEORSD Macroinvertebrate Field Sheet (Appendix A) will be completed at each site during sampler retrieval or when qualitative sampling is conducted.

Stream habitat will be measured by scoring components of the QHEI at all locations, including the substrate, instream cover, channel morphology, riparian zone, bank erosion, pool/glide and riffle/run quality and gradient. The HHEI will be conducted at those sites with drainage areas less than one square mile listed under PSPs with general watershed monitoring, as per the NEORSD's Stormwater Program. Examples of the Ohio EPA field sheets for the QHEI and the HHEI can be found in Appendix A.

Water chemistry samples will be collected at each electrofishing/macroinvertebrate sampling site included in the study. Water chemistry samples will be analyzed by NEORSD's Analytical Services Division. Appendix B lists the parameters to be tested along with the detection limits and practical quantitation limits. Field measurements for dissolved oxygen, pH, temperature, conductivity and turbidity will also be performed. A Surface Water Condition Sampling Field Data Form will be completed at each site during each sampling event (Appendix A).

Benthic and water column chlorophyll *a* samples may be collected from stream locations. Chemical and physical water quality parameters to be measured in conjunction with the chlorophyll *a* samples include total phosphorus, dissolved reactive phosphorus, nitrate+nitrite, ammonia, alkalinity, turbidity and suspended solids. In the Cuyahoga River, YSI 6600EDS data sondes may be installed at RMs 16.20, 10.75, 10.10, and 7.00 around the time that this sampling is conducted to more frequently monitor dissolved oxygen, temperature, conductivity, and pH.

1

¹See Appendix H for a list of all references.

(4) Field Collection and Data Assessment Techniques

Field collections for fish will be conducted at all stream locations. Sampling will be conducted using longline or boat electrofishing techniques and will consist of shocking all habitat types within a sampling zone. Headwater and wading sites, which are 0.15 and 0.20 kilometers in length, respectively, will be surveyed by moving from downstream to upstream. Boat sites, which are 0.50 kilometers in length, will be surveyed by moving from upstream to downstream. The stunned fish will be collected and placed into a live well for later identification. The longline and boat electrofishing zones will be assessed one to three times during the field season (June 15 - October 15).

Fish will be identified to the species level, weighed, counted, and examined for the presence of external anomalies including DELTs. Fish easily identified (commonly collected from year to year) will be returned to the site from which they are collected. Fish species difficult to identify will be brought back to the laboratory for verification by NEORSD Level 3 Fish Qualified Data Collectors (QDC). If necessary, vouchers will be sent to The Ohio State University Museum of Biological Diversity for verification by the Curator and/or Associate Curator of Fish. Voucher specimens will be collected as described in section (14). Endangered species and those too large for preservation will not be collected as voucher specimens, but will instead be photographed. Photographed vouchers will include features that permit definitive identification of the particular species.

Fish will be preserved in 10 percent formalin in the field, soaked in tap water for 24 to 48 hours after 5 to 7 days, then transferred to solutions of 30 and 50 percent ethanol for 5 to 7 days each and, finally, to 70 percent ethanol for long-term storage. Specimens larger than six inches will be slit along the right side and then soaked in formalin for approximately 10 to 14 days before being transferred to water and solutions of 30, 50 and 70 percent ethanol. Label information will include location (description and coordinates), date, time, collectors' names and sample identification code for each specimen collected.

Macroinvertebrate sampling will be conducted using quantitative and qualitative sampling techniques. Quantitative sampling will be done using a modified Hester-Dendy multi-plate artificial substrate sampler (HD) that is colonized for a six-week period. Multiple HD samplers will be installed at one or all sampling locations in case samplers are lost due to vandalism, burial, etc. and for the purposes of providing a replicate sample. Qualitative sampling will be conducted using a D-frame dip net when HD samplers are retrieved. The NEORSD Macroinvertebrate Field Sheet will be completed during each HD retrieval. Ronald Maichle of NEORSD, a Level 3 QDC for Benthic Macroinvertebrate

PSP Guidelines 3-5 & 7-17 June 12, 2013

Biology, may identify specimens in the replicate sample to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b).

Macroinvertebrate voucher specimens for both quantitative and qualitative sampling will be collected as described in section (14). Macroinvertebrate community assemblages collected will be shipped to Third Rock Consultants, LLC (Lexington, KY) for identification and enumeration. Third Rock Consultants, LLC will identify specimens to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b).

A detailed description of the sampling and analysis methods utilized in the fish community and macroinvertebrate surveys, including calculations of the IBI, MIwb and ICI, can be found in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volumes II* (1987a) and *III* (1987b).

The QHEI, as described in Ohio EPA's *Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI)* (2006) will be used to assess aquatic habitat conditions at each sample location.

The HHEI as described in Ohio EPA's *Field Evaluation Manual for Ohio's Primary Headwater Habitat Streams* (2012) will be used, when necessary, to conduct use attainability analyses and to classify the actual and expected biological conditions in primary headwater habitat streams.

Water chemistry sampling will occur across a variety of flow conditions. Techniques used for water chemistry sampling and chemical analyses will follow the Surface Water Field Sampling Manual (Ohio EPA, 2013). Chemical water quality samples from each site will be collected with at least one 4-liter disposable polyethylene cubitainers with disposable polypropylene lids and two 473-mL plastic bottles. Bacteriological samples will be collected in a sterile plastic bottle preserved with sodium thiosulfate. All water quality samples will be collected as grab samples. One duplicate sample and one field blank will be collected at randomly selected sites at a frequency of not less than 5% of the total samples collected for this study plan. The acceptable percent RPD will be based on the ratio of the sample concentration and detection limit (Ohio EPA, 2013): Acceptable % RPD = [(0.9465X-0.344)*100] + 5, where X = sample/detection limit ratio. Those RPDs that were higher than acceptable may indicate potential problems with sample collection and, as a result, the data will not be used for comparison to the water quality standards. Acid preservation of the samples, as specified in the NEORSD laboratory's standard operating procedure for each parameter, will occur in the field. Appendix B lists the analytical method, method detection limit and practical quantitation limit for each parameter analyzed. Field analyses include the use of either a YSI-556 MPS Multi-Parameter Water Quality Meter or YSI 600XL sonde to measure dissolved oxygen (DO), water temperature, conductivity and pH; and when necessary, a Hanna HI 98129 meter to measure pH and a Hach HQ30d meter with LDO101 probe to measure DO. Field turbidity will be measured using either a Hach 2100P Portable Turbidimeter or Hach 2100Q Turbidimeter. Specifications for these meters have been included in Appendix C.

Benthic and water column chlorophyll a samples may be collected if time and resources allow. Sampling methods will follow those detailed in the NEORSD Chlorophyll a Sampling and Field Filtering Standard Operating Procedure (SOP-EA001-00). A Chlorophyll a Sampling Field Sheet will be completed for each site (Appendix D). Water chemistry grab samples will be collected at the same time using the methods discussed previously and will be analyzed for nutrients, turbidity, alkalinity and suspended solids. Additionally in the Cuyahoga River, approximately 24-hours prior to each chlorophyll a sampling event, YSI 6600 EDS data sondes may be deployed at RMs 16.20, 10.75, 10.10 and 7.00. If installed, each data sonde will record, at fifteen-minute intervals, dissolved oxygen concentration, pH, temperature, and conductivity from the time the data sonde is deployed until the time it is retrieved. These data sondes will be placed in the stream by inserting each one into a 4.5-inch PVC pipe with holes drilled into the sides of the lower third of the pipe to allow water to pass through it. The data sondes will remain in the river for approximately 24-hours or longer following collection of the chlorophyll a samples.

Where possible, data assessment will include an analysis of temporal and spatial trends in the collected data. Species assemblages and individual metrics will be analyzed. Graphs that show current and historic QHEI, IBI, MIwb and ICI scores and how these scores compare to attainment status of biocriteria will be prepared. Water chemistry data collected will be compared to Ohio water quality standards to determine whether any excursions from the applicable water quality criteria have occurred. It will also be used to determine any relationships among individual parameters and chlorophyll *a* concentrations. Comparisons between water quality and biological community health will only be made if at least three water quality samples have been collected from that site.

(5) Stream Flow Measurement

Stream flow will be recorded for all locations during each electrofishing pass utilizing data from the United States Geological Survey (USGS) gauge station nearest the stream location, if applicable.

PSP Guidelines 3-5 & 7-17 June 12, 2013

Stream flow will be measured with a Marsh-McBirney FloMate Model 2000 Portable Flow Meter or an Aquaflow Probe Model 6900, which measure flow in feet per second, when HD samplers are installed and retrieved. The specifications for the flow meters can be found in Appendix C.

(7) Schedule

One to three electrofishing surveys will be conducted at each site between June 15 and October 15, 2013. Surveys will be conducted at least three weeks apart. Specific dates have not been scheduled. River flow and weather conditions will be assessed weekly to determine when each electrofishing pass will be conducted.

Artificial substrate samplers will be installed at stream locations once between June 15 and August 19, 2013, and retrieved six weeks later. Qualitative macroinvertebrate sampling will be conducted one time at all sites. Specific dates have not been scheduled. River flow and weather conditions will be assessed weekly to determine when the HD sampler installations and retrievals and qualitative sampling will be conducted.

QHEI, and if necessary, HHEI habitat evaluations will be conducted one time between June 15 and October 15, 2013. QHEI evaluations will be conducted around the same time as one of the electrofishing surveys.

Water chemistry samples will be collected a minimum of three times from stream locations between June 15 and October 15, 2013.

Benthic and water column chlorophyll *a* samples may be collected at least one time from stream locations between June 15 and October 15, 2013. These samples will be collected under low-flow conditions.

(8) QA/QC

Quality assurance and quality control of sampling and analysis methods for habitat, fish, and macroinvertebrate evaluations will follow Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volumes II* (1987a) and *III* (1987b), *Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI)* (2006) and *Field Evaluation Manual for Ohio's Primary Headwater Habitat Streams* (2012).

Electrofishing equipment will be used according to the guidelines listed in the operation and maintenance manual provided by Smith-Root, Inc. Malfunctioning equipment will not be used to collect data. Proper steps will be taken to correct any problems as soon as possible, whether by repairing in the field, at the

PSP Guidelines 3-5 & 7-17 June 12, 2013

NEORSD Environmental & Maintenance Services Center, or by contacting the supplier or an appropriate service company.

Fish species difficult to identify will be brought back to the laboratory for verification by Level 3 Fish QDC's, and if necessary, sent to The Ohio State University Museum of Biological Diversity for verification by the Curator and/or Associate Curator of Fish. Voucher specimens will be collected as described in section (14). Endangered species and those too large for preservation will not be collected as voucher specimens, but will instead be photographed. Photographed vouchers will include features that permit definitive identification of the particular species.

All macroinvertebrate community assemblages from stream locations, except for the replicate sample, will be collected and shipped to Third Rock Consultants, LLC for identification and enumeration. All specimens will be identified to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b). All macroinvertebrate specimens will be returned to NEORSD. At least two voucher specimens of each species, when available, will be separated into individual vials and kept as described in section (14). The remaining specimens for each site will be returned in a single container labeled with the site number and collection method and date. All specimens and accompanying chain-of-custody documentation will be retained by NEORSD and stored at the Environmental & Maintenance Services Center for a period not less than ten years.

Water samples obtained for chemical analyses will be collected, preserved (see Section 4), labeled and then placed on ice inside the field truck. The field truck will remain locked at all times when not occupied/visible. Sampling activities, including sample time and condition of surface water sampled, will be entered in a field log book and on the Surface Water Condition Sampling Field Data Form. The samples will then be delivered immediately to the NEORSD Analytical Services cooler, after which the door to the cooler will be locked, and the samples will be transferred to the custody of Analytical Services. The NEORSD Analytical Services Quality Manual and associated Standard Operating Procedures are on file with Ohio EPA. The Quality Assurance Officer at Analytical Services will send updates, revisions and any information on document control to Ohio EPA as needed.

For benthic and water column chlorophyll *a* sampling, three filtrations will be performed for each sample. A field filtration blank will be submitted for every 20 samples.

Calibration of YSI 6600EDS data sondes will be done according to the YSI Environmental Operations Manual. The conductivity will be calibrated first using a 1.413 mS/cm standard. Second, the pH will be calibrated using two different buffers (7 and 10 s.u.). The DO will be calibrated last with an acceptable error of 0.2 mg/L.

Once the sondes are removed from the river, the accuracy of the data that has been collected will be checked by comparing readings taken by the sondes to known standards. If the measurements taken at this time meet quality control goals, all of the data collected since the last calibration will be considered accurate. The acceptable differences for pH and conductivity will be ± 0.3 with pH 7 buffer and $\pm 10\%$ of the conductivity standard, respectively (EPA New England- Region 1, 2005). The acceptable difference for DO will be ± 0.2 mg/L. If the measurements do not meet quality control goals, best professional judgment will be used to decide if any of the data collected during that period may still be accurate. For example, the data collected from the four locations may be plotted on the same graph, and if it appears that the data points are following similar trends, they may be considered accurate. If any data that do not meet quality control goals are used, a rationale for their inclusion will be provided when the data are submitted.

(9) Work Products

Within one year of completion of the project, fish data (species, numbers, weights, pollution tolerances, the incidence of DELT anomalies, IBI and MIwb scores), macroinvertebrate data (types and numbers of macroinvertebrates collected and ICI scores), habitat data (QHEI raw data and scores) and water chemistry results will be submitted to the Ohio EPA. Additionally, reports summarizing, interpreting, graphically presenting and discussing the IBI, MIwb, ICI and QHEI scores, chlorophyll *a* results, and any excursions from water quality standards may be prepared for internal use.

(10) Qualified Data Collectors

The following Level 3 Qualified Data Collectors (QDC) will be involved with this study:

Name	Address	Email Address	Phone Number	QDC Specialty(s)
John W. Rhoades ¹	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	rhoadesj@neorsd.org	216-641-6000	QDC - 00008 CWQA/FCB/SHA/ BMB
Cathy Zamborsky	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	zamborskyc@neorsd.org	216-641-6000	QDC - 00009 CWQA/SHA
Seth Hothem	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	hothems@neorsd.org	216-641-6000	QDC - 00010 CWQA/FCB/SHA
Tom Zablotny	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	zablotnyt@neorsd.org	216-641-6000	QDC - 00018 CWQA/FCB/SHA
Ron Maichle	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	maichler@neorsd.org	216-641-6000	QDC - 00145 CWQA/SHA/BMB
Francisco Rivera	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	riveraf@neorsd.org	216-641-6000	QDC - 00262 CWQA/SHA
Jillian Novak	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	novakj@neorsd.org	216-641-6000	QDC – 00512 CWQA/SHA
Jonathan Brauer	4747 East 49 th Street Cuyahoga Heights, Ohio 44125	brauerj@neorsd.org	216-641-6000	QDC – 00663 SHA
Bert Remley ²	2526 Regency Road, Suite 180 Lexington, Kentucky 40503	bremley@thirdrockconsultants.com	859-977-2000	QDC – 00837 BMB
¹ NEORSD Lead Proj				

²Benthic Macroinvertebrate Identification

The following is a list of persons not qualified as Level 3 QDCs who may be involved in the project. Prior to the start of sampling, the project managers will explain to each individual the proper methods for sampling. Sampling will only be completed under the direct observation of a QDC. The lead project manager will be responsible for reviewing all reports and data analysis prepared by qualified personnel prior to completion.

Name	Address	Email Address	Phone Number
Nick Barille	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	barillen@neorsd.org	216-641-6000
Joseph Carbonaro	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	carbonaroj@neorsd.org	216-641-6000
Mark Colvin	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	colvinm@neorsd.org	216-641-6000
Tim Dobriansky	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	dobrianskyt@neorsd.org	216-641-6000
Kyle Frantz	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	frantzk@neorsd.org	216-641-6000
Donna Friedman	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	friedmand@neorsd.org	216-641-6000
Rae Grant	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	grantr@neorsd.org	216-641-6000

Name	Address	Email Address	Phone Number
Mark Matteson	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	mattesonm@neorsd.org	216-641-6000
Denise Phillips	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	phillipsd@neorsd.org	216-641-6000
Brandy Reischman	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	reischmanb@neorsd.org	216-641-6000
Frank Schuschu	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	schuschuf@neorsd.org	216-641-6000
Eric Soehnlen	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	soehnlene@neorsd.org	216-641-6000
William Stanford	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	stanfordw@neorsd.org	216-641-6000
Wolfram von Kiparski	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	vonkiparskiw@neorsd.org	216-641-6000
Rachel Dannemiller Co-Op	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	dannemillerr@neorsd.org	216-641-6000
Jana Nagle Co-Op	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	naglej@neorsd.org	216-641-6000
Shane Page Co-Op	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	pages@neorsd.org	216-641-6000
Ian Reider Co-Op	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	reideri@neorsd.org	216-641-6000

(11) Contract laboratory contact information

All bacteriological and/or chemical sample analysis will be completed by NEORSD's Analytical Services Division. Evidence of NEORSD's Analytical Services current accreditation and method dates can be found in Appendix E. The contact information for NEORSD's Analytical Service Division is:

NEORSD Analytical Services Mr. Mark Citriglia 4747 E. 49th Street Cuyahoga Heights, Ohio 44056 citrigliam@neorsd.org 216-641-6000

Any fish that is not positively identified in the field, or at NEORSD, will be sent to The Ohio State University Museum of Biological Diversity for verification by the Curator and/or Associate Curator of Fish. Fish will be identified to the species level.

Dr. Ted Cavender, Curator of Fish / Mr. Marc Kibbey, Associate Curator of Fish 1315 Kinnear Road, Columbus, Ohio 43212 cavender.1@osu.edu / kibbey.3@osu.edu 614-292-7873

PSP Guidelines 3-5 & 7-17 June 12, 2013

Identification of macroinvertebrates for stream locations will be completed by Third Rock Consultants LLC (Lexington, Kentucky) (Appendix F). Benthic macroinvertebrates will be identified to the lowest practical level as recommended by Ohio EPA (1987b). Third Rock Consultants LLC contact information:

Ms. Marcia Wooton Third Rock Consultants LLC 2526 Regency Road, Suite 180 Lexington, Kentucky 40503 mwooton@thirdrockconsultants.com 859-977-2000

(12) Copy of ODNR collector's permit

Maintenance Services Center.

Print/Signature: John W. Rhoades /

See Appendix G.

(13) Digital Catalog Statement

A digital photo catalog of all sampling locations will be maintained for 10 years and will include photos of the specific sampling location(s), the riparian zone adjacent to the sampling location(s) and the general land use in the immediate vicinity of the sampling location(s).

Date:

Print/Signature: John W. Rhoades /

(14)	Voucher Specimen Statement
	NEORSD will maintain a benthic macroinvertebrate and fish voucher collection which includes two specimens, or appropriate photo vouchers, of each species or taxa collected during the course of biological sampling from any stream within the NEORSD's service area. When benthic macroinvertebrates from multiple surface waters are collected within the same year and identified by the same QDC, one voucher collection will be created to represent the specimens collected from those streams. When fish specimens from multiple surface waters are collected within the same year, one voucher collection will be created to represent the specimens collected from those streams. A separate collection for each sampling event will not be maintained.

NEORSD will provide specimens or photo vouchers to the Director upon request. This collection will be stored at the NEORSD laboratory in the Environmental and

(15) Sample Location Statement

I attest that I will make available any and all sampling location information, including but not limited to; the name of the water body sampled, sampling location latitude and longitude, sampling location river mile where possible, general location information, the U.S. geological survey HUC 8 number and name, and the purpose for data collection at each sampling location.

Print/Signature:	John W. Rhoades /	Date:
` /	L3 Data Collector Statement d Project Manager for all stream locations is appress.	roved for all project
Print/Signature:	John W. Rhoades /	Date:
(17) Trespassin	ng Statement	
the Revis	ot been convicted or pleaded guilty to a Violation sed Code (criminal trespass) or a substantially size within the previous five years.	
Print/Signature:	John W. Rhoades /	Date:
Print/Signature:	Cathy Zamborsky /	Date:
Print/Signature:	Seth Hothem /	Date:
Print/Signature:	Tom Zablotny /	Date:
Print/Signature:	Ron Maichle /	Date:
Print/Signature:	Jillian Novak /	Date:
Print/Signature:	Jonathan Brauer /	Date:
	Francisco Rivera /	Date:

Appendix A

ChieEA	FISH DATA SHEET	Sheet ID For Office U		New Station (requires lat/long & county	Mix	Zone		Paş	зе	_of	·
Station ID		River Code		RM	Date			_Tiı	me_		
				Location _							
Lat	Long	3 ———	County		ALP _		_ Tir	ne F	ishe	d	
Crew		Netter	Oth	ers		Sam	pler '	Турє	·		
Distance	Flow	Temp. C	Secchi	Source	Project_						
	Number Tot Weighed Cour			Weights Cou	ints	D efor	mities,	, Erosi	NOM ions, L ELTs o	Lesion	ns, Tumo
						D	Е	L	T	M	*
V 10x	<u> </u>										
						D	Е	L	Т	M	*
V 10x	<u> </u>					_					
						D	Е	L	Т	M	*

V 10x	·					D	Е	L	Т	M	*
V 10x											
						D	E	L	Т	M	*
V 10x											
						D	Е	L	Т	M	
V 10x	ί					\pm					
						D	Е	L	Т	M	*
V 10x	:					D	Е	L	T	M	*
						-					
V 10x											
						D	Е	L	Т	M	*
V						_					

^{*} A-anchor worm; B-black spot; C-leeches; F-fungus; N-blind; P-parasites; S-emaciated, W-swirled scales Y-popeye; Z-other

	Fine	s Code	Number Weighed	Total Counted	Total Weight	WeightsCour	nts		Pa	ige -		- of -	
10	1,1112	Couc	Vergnea	Counted	weight			D	Е	L	Т	M	*
ŀ	V	10x											
11	•	10x						D	Е	L	Т	M	*
**													
ŀ	V	10x						D	Е	L	Т	M	*
12													
	V	10x											
13								D	Е	L	Т	M	*
Ì	V	10x											
14								D	Е	L	T	M	*
	V	10x											
ا								D	Е	L	Т	М	*
15				I									
ŀ	V	10											
ł	V	10x						D	Е	L	T	M	*
16													
ŀ	V	10x	<u> </u>					D	E	I.	T	M	*
17											-		
	V	10x		I						-			
18								D	Е	L	T	M	*
	V	10x											
19								D	Е	L	Т	M	*
ŀ	V	10x						_					
		1	<u> </u>					D	Е	L	Т	M	*
20			1	1	-								
	V	10											
ŀ	Y	10x						D	E	L	T	M	*
21								-					
	V	10x											

NEORSD Macroinvertebrate Field Sheet

Stream:					_ Riv	er Mile:		Year:	
Location:				Pro	ject:				
Drainage Area (r	mi ²):	Latitud	e (°N)/Longi	itude (°W):				
						nt Informati			
Install Date:				•					
Current at HD (f						·			
Reinstall Date:									
Current (fps):			cm):			Reason:			
Reinstall Date:			Cre	ew (QDC	Circled):				
Current (fps):		Depth (c	cm):			Reason:			
			Sampli	ng/Re	trieval I	nformation			
Sampling Metho	d:	Hester-Dend	y Di	ipnet	Sur	ber Co	ore Oth	ner:	
Sample ID	: HD):	(Q ualita	itive:		Other	•	
Sampling Date:			C	rew ((QDC Circ	led):			
HD Condition-	Curron	t (fps):	D.	onth (c	.m).		Water Tomp		°F / °C
TID Condition-		er of HD Block			'				
					nments:				
	Silt/Sol	lids: No	ne Sl	ight	Mo	derate	Heavy		
Dipnet-	Time S	ampled (min):		X	Number	of Crew:	= To	otal (min):	
1		ts Sampled:	Pool Ri						
			Rive	r Sam	pling Co	nditions			
Flow Condition:		Flood	Above Nor				Interstitial	Intermittent	Dry
Current Velocity	:	Fast	Moderate		Slow	Non-de	etect		
Channel Morpho	ology:	Natural	Channelize	d	Channel	ized (Recove	ered) Imj	pounded	
Bank Erosion:		Extensive	Moderate		Slight	None			
Riffle Developme	ent:	Extensive	Moderate		Sparse	Absent			
Riffle Quality:		Good	Fair		Poor		Embedded:	Yes	No
Water Clarity:		Clear	Murky		Turbid		Other:		
Water Color:		None	Green		Brown	Grey	Other:		
Canopy over HD: Open 7		75 %		50 %	25 %	Closed			
Comment Section	on:								
OEPA Commen		Codes:							
Samples Analyz	ed By:				QDC #:		Date:		

Physical Characteristics

Substrate Characteristics					Predominant Land Use (Left, Right or Both)				
	_	ø	_		Forest		an		Open Pasture
	Pool	Riffle Faits	Run	ts	Shrub	Res	idential	/Park	Closed Pasture
	H ::	Omits Riff Units	_	Units	Old Field	Miı	ning/Cor	nstruction	
Bedrock]	Rowcrop	We	tland		
Boulder				1	Industrial	Oth	er		
Rubble				1					
Coarse Gravel				1	Predominant	Ripari	an Vege	etation	
Fine Gravel				1	Left	Rig	_	Type	
Sand				1				Large Ti	rees
Silt				1				Small T	rees
Clay/Hardpan				1				Shrubs	
Detritus				1				Grass/W	veeds
Peat				1				None	
Muck				1					
Other				1	Margin Habi	tat			
Macrophytes				1	Margin Quali		Good	Fair	Poor
Algae				1	Undercut		Ro	oot Mats	Tree Roots
Artifacts				1	Grass		W	ater Willow	Woody Debris
Compaction (F,M,S)	\Box			1	Shallows		Cl	ay/Hardpan	Macrophytes
Depth (Avg)				1	Rip Rap			ılkhead	1 7
Width (Avg)				1	Other				
\ U /				4	-				
				Biolo	gical Characte	eristics			
Riffle:							V= Very	Abundant; A= Abund	ant; C= Common; R= Rare
Predominant Org	ganism:					C	overall Am	ount (V=>	151; A= 150-101; C= 100-11; R= 10-1)
Other Common (ns:					/	Porifera, Bryon	zoa
	High	Mode	erate	Low	7		/ /	_	ligochaeta, Hirudinea
•	High	Mode	erate	Low	7		/	Isopoda, Ampl	
·							/	Decapoda, Hy	
Run:								Ephemeroptera	a
Predominant Org	ganism:							Baetidae	
Other Common (Organisı	ns:					/ /	Heptageni	idae, Leptohyphidae, Caenidae
Density:	High	Mode	erate	Low	7			Other	
Diversity:	High	Mode	erate	Low	7		/	Zygoptera, An	isoptera
	_							Plecoptera	
Pool:								Hemiptera	
Predominant Org	ganism:						/	Megaloptera, N	Neuroptera
Other Common (Organisı	ns:						Trichoptera	
Density:	High	Mode	erate	Low	7			Hydropsy	ychidae
Diversity:	High	Mode	erate	Low	7		/	Hydropti	lidae, Leptoceridae
·								Other	
Margin:								Coleoptera	
Predominant Org	ganism:							Elimidae	
Other Common (Organisı	ns:						Other	
	High	Mode	erate	Low	7			Diptera	
•	High	Mode		Low				Chironon	nidae
•	Č							Other	
Other Notable Collec	tions:						/	Gastropoda, B	ivalvia
								Other	

Field Narrative Rating: E VG G MG F P VP

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

Stream & Location:	RM:_	_• <i>Date:</i>		_
Scorers Full Name & Affiliation:_	Northeast	Ohio Regional S		,
River Code:=STORET #:(NAD 83 - decimal °) =	/8		Office verified location	
1] SUBSTRATE Check ONLY Two substrate TYPE BOXES; estimate % or note every type present Check O	NE (<i>Or 2 8</i>	0 ,		
BEST TYPES POOL RIFFLE OTHER TYPES POOL RIFFLE ORIGIN		QUAL		
□ □ BLDR /SLABS [10] □ □ □ HARDPAN [4] □ □ LIMESTONE [1] □ □ BOULDER [9] □ □ DETRITUS [3] □ □ TILLS [1]	SILT	□ HEAVY [- □ MODER A □ □ MODER A □ MODER A □ MODER A □ MODER A	•	ate
□ □ COBBLE [8] □ □ MUCK [2] □ WETLANDS [0] □ □ GRAVEL [7] □ □ SILT [2] □ HARDPAN [0]	SILI	☐ NORMAL ☐ FREE [1]		
	OF DE DA	EXTENS	VE [-2]	
□ □ BEDROCK [5]	AN NE	MODERA Solution Modera	TE [-1] Maximu . [0] 20	um
Comments 3 or less [0] SHALE [-1]		□ NONE [1]		
COAL FINES [-2]				
2] ///STREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common quality; 2-Moderate amounts, but not of highest quality or in small amounts	n of margin	al AMO	UNT	
quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional	large	Check ONE (C		
UNDERCUT BANKS [1] POOLS > 70cm [2] OXBOWS, BACKWATE		MODERATE		
OVERHANGING VEGETATION [1] ROOTWADS [1] AQUATIC MACROPHYT SHALLOWS (IN SLOW WATER) [1] BOULDERS [1] LOGS OR WOODY DEE		☐ SPARSE 5-< ☐ NEARLY AB	25% [3] SENT <5% [1]	
ROOTMATS [1]	J. [1]		Cover	
Comments			Maximum 20	
31 CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average)				
SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY				
☐ HIGH [4] ☐ EXCELLENT [7] ☐ NONE [6] ☐ HIGH [3] ☐ MODERATE [3] ☐ GOOD [5] ☐ RECOVERED [4] ☐ MODERATE [2]				
□ LOW [2] □ FAIR [3] □ RECOVERING [3] □ LOW [1]			Channel	
□ NONE [1] □ POOR [1] □ RECENT OR NO RECOVERY [1] Comments			Maximum	
			20	
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (On River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY	•	(& average)		
EROSION WIDE > 50m [4] FOREST, SWAMP [3]	L R_	CONSERVATIO	N TILLAGE [1]	
☐ NONE / LITTLE [3] ☐ MODERATE 10-50m [3] ☐ ☐ SHRUB OR OLD FIELD [2]		JRBAN OR INI	DUSTRIAL [0] STRUCTION [0]	
☐ ☐ HEAVY / SEVERE [1] ☐ ☐ VERY NARROW < 5m [1] ☐ ☐ FENCED PASTURE [1]		e predominant la		
□ □ NONE [0] □ OPEN PASTURE, ROWCROP [0]		00m riparian.	Riparian	
Comments		ı	Maximum 10	
5] POOL / GLIDE AND RIFFLE / RUN QUALITY		Recreation	Potential	
MAXIMUM DEPTH CHANNEL WIDTH CURRENT VELOCITY Check ONE (ONLY!) Check ONE (Or 2 & average) Check ALL that apply		II.	Contact	
□ > 1m [6] □ POOL WIDTH > RIFFLE WIDTH [2] □ TORRENTIAL [-1] □ SLOW [1] □ 0.7-<1m [4] □ POOL WIDTH = RIFFLE WIDTH [1] □ VERY FAST [1] □ INTERSTIT	181 541	Secondar	y Contact	
\square 0.4-<0.7m [2] \square POOL WIDTH < RIFFLE WIDTH [0] \square FAST [1] \square INTERMIT	ΓENT [-2]	(circle one and co	omment on back)	
\square 0.2-<0.4m [1] \square MODERATE [1] \square EDDIES [1] \square < 0.2m [0] Indicate for reach - pools and rifi			Pool / Current	
Comments			Maximum 12	
Indicate for functional riffles; Best areas must be large enough to support	a popula	tionNO	RIFFLE [metric=(Λ1
of riffle-obligate species: Check ONE (Or 2 & average). RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFF	FIF/RU	<u>□NO</u> N EMBEDDI		<u> </u>
☐ BEST AREAS > 10cm [2] ☐ MAXIMUM > 50cm [2] ☐ STABLE (e.g., Cobble, Boulder) [2]		ONE [2]		
□ BEST AREAS 5-10cm [1] □ MAXIMUM < 50cm [1]	Πм	OW [1] ODERATE [0]	Riffle /	
[metric=0] Comments	□ E	XTENSIVE [-1]	Run Maximum	
61 CDADIENT			8	≥ ∕
DRAINAGE AREA MODERATE [6-10]	%GLIDE	=	<i>Gradient</i> Maximum	
/ mi2\ \ \ HIGH - VERY HIGH [10-6]	%RIFFLE	::()	10	

AJ SAMPLI Check A	ED REACH ALL that apply	Comment RE: Reach consistency/	Is reach typical of steam?, Recreation	n/Observed - Inferred, Other	r/Sampling observations, Concerns, Acc	ess directions, etc.
METHOD ☐ BOAT	STAGE 1st -sample pass- 2nd					
 WADE L. LINE OTHER	☐ HIGH ☐ ☐ ☐ UP ☐ ☐ NORMAL ☐					
DISTANCE	☐ LOW ☐ ☐ DRY ☐					
□ 0.5 Km □ 0.2 Km □ 0.15 Km □ 0.12 Km □ 0.12 Km □ OTHER meters	CLARITY 1stsample pass 2nd < 20 cm ☐ 20-<40 cm ☐ 40-70 cm ☐ > 70 cm/ CTB ☐ SECCHI DEPTH	☐ INVASIVE MACROPHYTES ☐ EXCESS TURBIDITY ☐ DISCOLORATION ☐ FOAM / SCUM	DJ MAINTENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED	Circle some & COMMENT	EJ ISSUES WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPs-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE	FI MEASUREMENTS x width x depth max. depth x bankfull width bankfull x depth
CANOP	· · · · · · · · · · · · · · · · · · ·	☐ NUISANCE ODOR	RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED		FALSE BANK / MANURE / LAGOON WASH H ₂ 0 / TILE / H ₂ 0 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT	W/D ratio bankfull max. depth floodprone x ² width entrench. ratio
☐ 10%-<30% ☐ <10%- CLO	CJ RECRI	EATION AREA DEPTH POOL: □>100ft² □>3ft	IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE		PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY	Legacy Tree:

Stream Drawing:

ChieFPA Primary Headwater Habitat Evaluation Form HHEI Score (sum of metrics 1, 2, 3):

SITE NAME/LOCATION			
SITE NUMBER	RIVER BASIN	DRAINAGE AREA (mi²)	
LENGTH OF STREAM REACH (ft)	LAT LONG	RIVER CODE RIVER MILE	
DATE SCORER	COMMENTS		
NOTE: Complete All Items On This Form	- Refer to "Field Evaluation Ma	nual for Ohio's PHWH Streams" for Instr	uctions
STREAM CHANNEL	URAL CHANNEL	☐ RECOVERING ☐ RECENT OR NO REC	OVERY
(Max of 32). Add total number of significa TYPE BLDR SLABS [16 pts] BOULDER (>256 mm) [16 pts] BEDROCK [16 pt] COBBLE (65-256 mm) [12 pts]	nt substrate types found (Max of 8). F RCENT TYPE SILT [3 pt] LEAF PAC FINE DETF CLAY or H. MUCK [0 p ARTIFICIA (A) Substrate Perc Check	PERCENT	HHEI Metric Points Substrate Max = 40
2. Maximum Pool Depth (Measure the maevaluation. Avoid plunge pools from road > 30 centimeters [20 pts] > 22.5 - 30 cm [30 pts] > 10 - 22.5 cm [25 pts] COMMENTS	culverts or storm water pipes) (Che	0 cm [15 pts] pts] ER OR MOIST CHANNEL [0 pts]	Pool Depth Max = 30
3. BANK FULL WIDTH (Measured as the a > 4.0 meters (> 13') [30 pts]	average of 3-4 measurements)		Bankfull Width Max=30
COMMENTS	AV	ERAGE BANKFULL WIDTH (meters):	
RIPARIAN ZONE AND FLOODPI RIPARIAN WIDTH L R (Per Bank) Wide >10m Moderate 5-10m Narrow <5m	This information must also LAIN QUALITY ☆ NOTE: River L FLOODPLAIN QUALITY L R (Most Predominant per B Mature Forest, Wetland Immature Forest, Shrub of Field Residential, Park, New F	eft (L) and Right (R) as looking downstream ☆ ank) L R Conservation Tillage or Old Urban or Industrial	op
□ □ None COMMENTS	☐ ☐ Fenced Pasture	☐ ☐ Mining or Construction	-
	s (Interstitial)	pist Channel, isolated pools, no flow (Intermittent) y channel, no water (Ephemeral)	-
□ None □ □ 0.5 □	er 61 m (200 ft) of channel) (Check 0 1.0	ONLY one box): 3.0 3.3	
STREAM GRADIENT ESTIMATE Flat (0.5 ft/100 ft) Flat to Moderate	☐ Moderate (2 ft/100 ft) ☐ [Moderate to Severe ☐ Severe (10 ft/10	00 ft)

ADDITIONAL STREAM INFORMATION (This Information Must Also be Comp	eleted):
QHEI PERFORMED? - Tyes No QHEI Score(If	Yes, Attach Completed QHEI Form)
DOWNSTREAM DESIGNATED USE(S)	
☐ WWH Name:	Distance from Evaluated Stream
CWH Name:	Distance from Evaluated Stream
EWH Name:	Distance from Evaluated Stream
MAPPING: ATTACH COPIES OF MAPS, INCLUDING THE ENTIRE WAT	ERSHED AREA. CLEARLY MARK THE SITE LOCATION
USGS Quadrangle Name: NRCS Sc	oil Map Page: NRCS Soil Map Stream Order
County: Township / City:_	
MISCELLANEOUS	
Base Flow Conditions? (Y/N): Date of last precipitation:	Quantity:
Photograph Information:	
Elevated Turbidity? (Y/N): Canopy (% open):	
Were samples collected for water chemistry? (Y/N): (Note lab sample n	o. or id. and attach results) Lab Number:
Field Measures: Temp (°C) Dissolved Oxygen (mg/l) pH	(S.U.) Conductivity (µmhos/cm)
Is the sampling reach representative of the stream (Y/N) If not, please exp	plain:
Additional comments/description of pollution impacts:	
BIOTIC EVALUATION	
Performed? (Y/N): (If Yes, Record all observations. Voucher collections ID number. Include appropriate field data sheets from	s optional. NOTE: all voucher samples must be labeled with the sit om the Primary Headwater Habitat Assessment Manual)
Fish Observed? (Y/N) Voucher? (Y/N) Salamanders Observed? (Frogs or Tadpoles Observed? (Y/N) Voucher? (Y/N) Aquatic Macroin	
Comments Regarding Biology:	

DRAWING AND NARRATIVE DESCRIPTION OF STREAM REACH (This <u>must</u> be completed):

Include important landmarks and other features of interest for site evaluation and a narrative description of the stream's location

NEORSD Surface Water Condition Sampling Field Data Form

Stream:				·	llectors:		
Gage Sta	tion and ID:			Daily Mean	Discharge:		ft³/sec
			wing a wet weather				
Water Ou	ality Meters	Used:					
			River Mile (Site				
Weather:			Overcast L ow Melt C				
			Minimal Baseli				
HD Status			Buried C h) Missing				fps
Color:		Mudo			Other:	<u> </u>	
Odor:	Normal	Petroleum	Anaerobic	Sewage	Chemical	Other:	
Surface C	oating:	None F	Foam Oily	Scum	Other:		
Field Para	meters:	Conductiv	vity (µmhos/cm):		Temperature	(°C):	
		D:110	gan (mg/L):		pH (s.u.)):	
		Dissolved Oxy	gen (mg/L).		_ ' '		
General C	Comments:		gen (mg/L).		Turbidity (NTU)):	
					Turbidity (NTU)):	
					Turbidity (NTU)):	
Time (hrs): Weather:	Clear	Partly Cloudy		e):ight Rain/Show	Turbidity (NTU)): Rain	
Time (hrs):	Clear Steady Rain	Partly Cloudy Heavy Sno	River Mile (Site	e):ight Rain/Showo	Turbidity (NTU)	Rain	
Time (hrs):	Clear Steady Rain Dry Inte	Partly Cloudy Heavy Sno ermittent M	River Mile (Site Overcast L ow Melt C Minimal Baseli Buried C	e):ight Rain/Showo Other: ine/Normal Out of Water	ers Heavy Elevated Flo	Rain— ood	
Time (hrs):	Clear Steady Rain Dry Inte 3: Unknow	Partly Cloudy Heavy Snormittent OK Forn (river too high	River Mile (Site Overcast L ow Melt C Minimal Baseli Buried C h) Missing	e):ight Rain/Showo Other: ine/Normal Out of Water Not Installe	ers Heavy Elevated Flo H-D was Re ed Flow:	Rain—ood	fps
Time (hrs):	Clear Steady Rain Dry Inte S: Unknow Clear	Partly Cloudy Heavy Snormittent OK For (river too high	River Mile (Site Overcast L ow Melt C Minimal Baseli Buried C h) Missing	e):	ers Heavy Elevated Flo H-D was Re ed Flow: Other:	Rainood	fps
Time (hrs):	Clear Steady Rain Dry Inte S: Unknow Clear Normal	Partly Cloudy Heavy Sno ermittent M OK F on (river too high	River Mile (Site Overcast L ow Melt C Minimal Baseli Buried C h) Missing dy Tea Anaerobic	e):	ers Heavy Elevated Flo H-D was Re ed Flow: Other:	Rain ood eset Other:	fps
Time (hrs):	Clear Steady Rain Dry Inte S: Unknow Clear Normal	Partly Cloudy Heavy Sno ermittent M OK F on (river too high Mudo Petroleum None F	River Mile (Site Overcast L ow Melt C Minimal Baseli Buried C h) Missing dy Tea Anaerobic Foam Oily	e):	ers Heavy Elevated Flo H-D was Re ed Flow: Other: Chemical Other:	Rain ood eset Other:	fps
Time (hrs):	Clear Steady Rain Dry Inte S: Unknow Clear Normal	Partly Cloudy Heavy Sno ermittent M OK F on (river too high Mudo Petroleum None F	River Mile (Site Overcast L ow Melt C Minimal Baseli Buried C h) Missing dy Tea Anaerobic Foam Oily wity (µmhos/cm):	e):	ers Heavy: Elevated Flow: H-D was Red Flow: Other: Chemical Other: Temperature	Rain ood eset Other:	fps
Time (hrs):	Clear Steady Rain Dry Inte S: Unknow Clear Normal	Partly Cloudy Heavy Sno ermittent M OK F on (river too high Mudo Petroleum None F	River Mile (Site Overcast L ow Melt C Minimal Baseli Buried C h) Missing dy Tea Anaerobic Foam Oily	e):	ers Heavy: Elevated Flow: H-D was Red Flow: Other: Chemical Other: Temperature	Rain	fps

Appendix B

Parameter	Additional Name	Test	Minimum Detection Limit	Practical Quantitation Limit	
Alkalinity		EPA 310.2	3.7 mg/L	10 mg/L	
Chemical Oxygen Demand	COD	EPA 410.4	4.1 mg/L	10 mg/L	
Mercury	Hg	EPA 245.1	0.006 μg/L 0.050 μg/L		
Ammonia *	NH ₃	EPA 350.1	0.005 mg/L	0.020 mg/L	
Nitrite + Nitrate	$NO_2 + NO_3$	EPA 353.2	0.008 mg/L	0.020 mg/L	
Total Kjeldahl Nitrogen	TKN	EPA 351.2	0.23 mg/L	0.50 mg/L	
Dissolved Reactive Phosphorus	DRPhos	EPA 365.1	0.005 mg/L	0.010 mg/L	
Total Phosphorus	Total-P	EPA 365.1	0.001 mg/L	0.010 mg/L	
Chlorophyll a	Chlorophyll a	EPA 445.0	0.3 μg/L	1.5 μg/L	
Chloride	Chloride by IC	EPA 300.0	0.050 mg/L	5.000 mg/L	
Sulfate	Sulfate by IC	EPA 300.0	0.065 mg/L	5.000 mg/L	
Biological Oxygen Demand	BOD	SM 5210 ¹	2 mg/L		
Silver	Ag	EPA 200.8	0.066 μg/L	1.00 μg/L	
Aluminum	Al	EPA 200.8	1.98 μg/L	10.0 μg/L	
Arsenic	As	EPA 200.8	0.52 μg/L	2.00 μg/L	
Barium	Ba	EPA 200.8	0.17 μg/L	1.00 μg/L	
Beryllium	Be	EPA 200.8	0.13 μg/L	1.00 μg/L	
Calcium	Ca	EPA 200.8	82.60 μg/L	250.0 μg/L	
Cadmium	Cd	EPA 200.8	0.22 μg/L	1.00 μg/L	
Cobalt	Со	EPA 200.8	0.13 μg/L	1.00 μg/L	
Chromium	Cr	EPA 200.8	0.26 μg/L	1.00 μg/L	
Copper	Cu	EPA 200.8	0.11 μg/L	1.00 μg/L	
Iron	Fe	EPA 200.8	3.96 μg/L	10.00 μg/L	
Potassium	K	EPA 200.8	27.00 μg/L	250.0 μg/L	
Magnesium	Mg	EPA 200.8	16.40 μg/L	250.0 μg/L	
Manganese	Mn	EPA 200.8	0.56 μg/L	2.00 μg/L	
Molybdenum	Mo	EPA 200.8	0.11 μg/L	1.00 μg/L	
Sodium	Na	EPA 200.8	15.60 μg/L	250.0 μg/L	
Nickel	Ni	EPA 200.8	1.96 μg/L	4.00 μg/L	
Lead	Pb	EPA 200.8	0.17 μg/L	1.00 µg/L	
Antimony	Sb	EPA 200.8	0.15 μg/L	1.00 μg/L	
Selenium	Se	EPA 200.8	2.46 μg/L	5.00 μg/L	
Tin	Sn	EPA 200.8	0.17 μg/L	1.00 µg/L	
Titanium	Ti	EPA 200.8	0.72 μg/L	2.00 µg/L	
Thallium	Tl	EPA 200.8	0.16 μg/L	1.00 µg/L	
Vanadium	V	EPA 200.8	1.84 μg/L	4.00 μg/L	
Zinc	Zn	EPA 200.8	4.80 μg/L	10.00 μg/L	
Total Metals	Total Metals (calc.)	EPA 200.8		. g/L)+(Ni μg/L)+(Zn μg/L)	
Hardness	Hardness (calc.)	SM 2340 B ¹	CaCO3 mg/L = $(2.497*Ca \text{ mg/L})+(4.118*Mg \text{ mg/L})$		
Total Solids	TS	SM 2540 B ¹	1.0 mg/L	5.0 mg/L	
Total Suspended Solids	TSS	SM 2540 D ¹	0.5 mg/L	1.0 mg/L	
Total Dissolved Solids	TDS	SM 2540 C ¹	1.0 mg/L	5.0 mg/L	
Turbidity **		EPA 180.1	0.1 NTU	0.2 NTU	
Escherichia coli	E. coli	EPA 1603	1 colony		
Field Parameter		Test		Reported in)	
рН		EPA 150.1 ¹		s.u.	
Conductivity		SM 2510A ¹		ıs/cm	
Dissolved Oxygen	DO	SM 4500-0 G ¹	· ·		
Temperature	Temp	EPA 1701.1 1	mg/L °C		
Turbidity **	Temp	EPA 1701.1 EPA 180.1	NTU		
•	Turbidity ** EPA 180.1 N1U OTE: Listed MDI /POL is for undistilled samples. Any samples that are required to be distilled will have aMDI = 0.010 mg/L POL = 0.100 mg/L				

^{*} NOTE: Listed MDL/PQL is for undistilled samples. Any samples that are required to be distilled will have aMDL = 0.010 mg/L, PQL = 0.100 mg/L

 $[\]ensuremath{^{**}}$ Turbidity will either be completed in the field or at the laboratory.

¹ Standard Methods for the Examination of Water and Wastewater, 19th Edition

Appendix C

Pure
Data for a
Healthy
Planet®

A rugged, cost-effective multiparameter handheld system designed for the field!

YSI 556 Multiparameter System

Versatile, multiparameter handheld instrument

Rugged and reliable, the YSI 556 MPS (Multiprobe System) combines the versatility of an easy-to-use, easy-to-read handheld unit with all the functionality of a multiparameter system.

- Simultaneously measures dissolved oxygen, pH, conductivity, temperature, and ORP
- Field-replaceable electrodes
- Compatible with EcoWatch' for Windows' data analysis software
- Stores over 49,000 data sets, time and date stamped, interval or manual logging
- Three-year warranty on the instrument; one-year on the probes
- GLP assisting, records calibration data in memory
- Available with 4, 10, and 20-m cable lengths
- IP-67, impact-resistant, waterproof case
- Easy-to-use, screw-on cap DO membranes
- RS-232 interface for PC connection

Options to Fit Your Applications!

- Battery Options The unit is powered by alkaline batteries or an optional rechargeable battery pack with quick-charge feature.
- Optional Barometer Internal barometer can be user-calibrated and displayed along with other data, used in dissolved oxygen calibrations, and logged to memory for tracking changes in barometric pressure. (Choose 556-02)
- Optional Flow Cell The 5083 flow cell can be used for ground water applications or anytime water is pumped for sampling.
- Carrying Case The instrument comes standard with YSI 5061, a soft-sided carrying case with enough space for the 556, a 20-meter cable, and calibrating supplies. An optional 5080 hard-sided carrying case is also available.
- Confidence Solution* Quality assurance ensured. Quickly check conductivity, pH, and ORP readings with one solution.

+1 937 767 7241 800 897 4151 (US) www.ysi.com

YSI Environmental +1 937 767 7241 Fax +1 937 767 9353 environmental@ysi.com

YSI Integrated Systems +1 508 748 0366 systems@ysi.com

SonTek/YSI +1 858 546 8327 inquiry@sontek.com

YSI Gulf Coast +1 225 753 2650 environmental@ysi.com

AMJ Environmental +1 727 565 2201 amj@ysi.com

YSI Hydrodata (UK) +44 1462 673 581 europe@ysi.com

YSI Middle East (Bahrain) +973 1753 6222 halsalem@ysi.com

YSI (Hong Kong) Limited +852 2891 8154 hongkong@ysi.com

YSI (China) Limited +86 532 575 3636 beijing@ysi-china.com.

YSI Nanotech (Japan) +81 44 222 0009 nanotech@ysi.com

YSI India +91 989 122 0639 sham@ysi.com

YSI Australia +61 7 390 17223 acorbett@ysi.com

ISO **900**1 14001

EcoWatch, Pure Data for a Healthy Planet. Confidence Solution and Who's Minding the Planet? are registered trademarks of YSI Incorporated. Windows is a registered trademark of Microsoft.

2009 YSI Incorporated Printed in USA 0709 W11-06 $C \in$

YSI incorporated Who's Mindinn the Planet?"

5563 MPS Sensor Specifications

Sensor Type Dissolved Oxygen Steady state polarographic (% saturation) Range 0 to 500% air saturation

0 to 200% air saturation, \pm 2% of the reading or \pm 2% air saturation, Accuracy

whichever is greater; 200 to 500% air saturation, ± 6% of the reading

Resolution 0.1% air saturation

Dissolved Oxygen (mg/L) Sensor Type Steady state polarographic

Range 0 to 50 mg/L Accuracy 0 to 20 mg/L, \pm 2% of the reading or \pm 0.2 mg/L, whichever is greater;

20 to 50 mg/L, ± 6% of the reading

Resolution 0.01 mg/L

Temperature Sensor Type YSI Temperature Precision thermistor

Range -5 to 45°C ± 0.15°C Accuracy Resolution 0.1°C

Conductivity Sensor Type 4-electrode cell with autoranging

Range 0 to 200 mS/cm

 \pm 0.5% of reading or \pm 0.001 mS/cm; whichever is greater (4-meter cable) Accuracy

 \pm 1.0% of reading or \pm 0.001 mS/cm; whichever is greater (20-meter cable)

Resolution 0.001 mS/cm to 0.1 mS/cm (range-dependent)

Salinity Sensor Type Calculated from conductivity and temperature

0 to 70 ppt Range

Accuracy ± 1.0% of reading or ±0.1 ppt, whichever is greater

Resolution 0.01 ppt

Sensor Type Glass combination electrode pH (optional)

0 to 14 units Range Accuracy ±0.2 units Resolution 0.01 units

Platinum button ORP (optional) Sensor Type Range -999 to +999 mV Accuracy ± 20 mV

Resolution 0.1 mV **Total Dissolved Solids** Sensor Type

Calculated from conductivity (variable constant, default 0.65) (TDS) Range 0 to 100 g/L Resolution 4 digits

Barometer (optional) 500 to 800 mm Hg Range

Accuracy ± 3 mm Hg within ± 10°C temperature range from calibration point

> Resolution 0.1 mm Hg

YSI 556 Instrument Specifications

11.9 cm width x 22.9 cm lenth (4.7 in. x 9 in.)

Weight with batteries 2.1 lbs. (916 grams)

Power 4 alkaline C-cells; optional rechargeable pack Cables 4-, 10-, and 20-m (13.1, 32.8, 65.6 ft.) lengths Warranty 3-year instrument; 1-year probes and cables

Communication Port RS-232 Serial

Data Logger 49,000 data sets, date and time stamp, manual or logging, with user-selectable intervals

556 Ordering Information (Order all items separately)

556-01 Instrument (with 5061 large, soft-sided carrying case)

556-02 Instrument with barometer option (with 5061 carrying case) 5563-4 4-m cable and DO/temp/conductivity

5563-10 10-m cable and DO/temp/conductivity 5563-20 20-m cable and DO/temp/conductivity

5564 pH Probe for any 5563 cable pH/ORP Probe for any 5563 cable 5565

6118 Rechargeable battery pack kit (includes battery, adapter, charger)

614 Ultra clamp, C-clamp mount Charger, cigarette lighter 616

4654 Tripod (small tripod for instrument)

5060 Small carrying case, soft-sided (fits instrument and 4-m cable)

5065 Form-fitted carrrier with shoulder strap

5080 Small carrying case, hard-sided (fits instrument, 4-m cable, flow

cell, batteries, membrane kit, calibration bottles) 5083 Flow cell

5085 Hands-free harness

5580 Confidence Solution* (insure probe accuracy with a simple field-

check for conductivity, pH, and ORP)

The 5080 carrying case with 556, 5563-4 cable, and 5083 flow cell.

The YSI 600XL and 600XLM

Pure Data for a Healthy Planet.®

Economical, multiparameter sampling or logging in a compact sonde

YSI 600XL and 600XLM Sondes

Measure multiple parameters simultaneously

The YSI 600XL and YSI 600XLM compact sondes measure eleven parameters simultaneously:

Temperature TDS
Conductivity pH
Specific Conductance ORP

Salinity Depth or Level

Resistivity Rapid Pulse DO (% and mg/L)

Connect with Data Collection Platforms

Either sonde can easily connect to the YSI 6200 DAS (Data Acquisition System), YSI EcoNet™ or your own data collection platform, via SDI-12 for remote and real-time data acquisition applications.

Economical Logging System

The YSI 600XLM is an economical logging system for long-term, *in situ* monitoring and profiling. It will log all parameters at programmable intervals and store 150,000 readings. At one-hour intervals, the instrument will log data for about 75 days utilizing its own power source. The 600XL can also be utilized in the same manner with user-supplied external power.

- Either sonde fits down 2-inch wells
- Horizontal measurements in very shallow waters
- Stirring-independent Rapid Pulse* dissolved oxygen sensor
- Field-replaceable sensors
- Easily connects to data collection platforms
- Available with detachable cables to measure depth up to 200 feet
- Compatible with YSI 650 Multiparameter Display System
- Use with the YSI 5083 flow cell for groundwater applications

Sensor performance verified*

The 6820 VZ and 6920 VZ sondes use sensor technology that was verified through the US EPA's Environmental Technology Verification Program (ETV). For information on which sensors were performance-verified, turn this sheet over and look for the ETV logo.

To order, or for more info, contact YSI Environmental.

+1 937 767 7241 800 897 4151 (US) www.ysi.com

YSI Environmental +1 937 767 7241 Fax +1 937 767 9353 environmental@ysi.com

Endeco/YSI +1 508 748 0366 Fax +1 508 748 2543 systems@ysi.com

SonTek/YSI +1 858 546 8327 Fax +1 858 546 8150 inquiry@sontek.com

YSI Gulf Coast +1 225 753 2650 Fax +1 225 753 8669 environmental@ysi.com

YSI Hydrodata (UK) +44 1462 673 581 Fax +44 1462 673 582 europe@ysi.com

YSI Middle East (Bahrain) +973 1753 6222 Fax +973 1753 6333 halsalem@ysi.com

YSI (Hong Kong) Limited +852 2891 8154 Fax +852 2834 0034 hongkong@ysi.com

YSI (China) Limited +86 10 5203 9675 Fax +86 10 5203 9679 heijing@ysi-china.com

YSI Nanotech (Japan) +81 44 222 0009 Fax +81 44 221 1102 nanotech@ysi.com

ISO 9001 ISO 14001

Yellow Springs, Ohio Facility

ROX and Rapid Pulse are trademarks and FceWatch, Pure Data for a Healthy Planet and Who's Minding the Planet? are registered trademarks of YSI Incorporated.

©2007 YSI Incorporated

Printed in USA 0107 E55-01

Sensor as all hated with the ETV lagowere submatter distribe ETV program on the 131 6000525. Information on the performance thereacterized CTV lawer quality sensors are the found at times appropriete or cell 183 at 2000,000,000 for the ETV weekfaction report. Use of the ETV many or loss not make any replication or certification of the product product and so in make any replicat or implications are not product proformance.

YS1 incorporated
Who's Minding
the Planet?

YSI 600XL & 600XLM Sensor Specifications

	Range	Resolution	Accuracy
Dissolved Oxygen % Saturation ETV 6562 Rapid Pulse" Sensor*	0 to 500%	0.1%	0 to 200%: ±2% of reading or 2% air saturation, whichever is greater; 200 to 500%: ±6% of reading
Dissolved Oxygen mg/L ETV 6562 Rapid Pulse* Sensor*	0 to 50 mg/L	0.Q1 mg/L	0 to 20 mg/L: \pm 0.2 mg/L or 2% of reading, whichever is greater; 20 to 50 mg/L: \pm 6% of reading
Conductivity* 6560 Sensor* ET	0 to 100 mS/cm	0.001 to 0.1 mS/cm (range dependent)	±0.5% of reading + 0.001 mS/cm
Salinity	0 to 70 ppt	0.01 ppt	±1% of reading or 0.1 ppt, whichever is greater
Temperature 6560 Sensor* ET✔	-5 to +50°C	0.01°C	±0.15°C
pH 6561 Sensor⁴ ET✔	0 to 14 units	0.01 unit	±0.2 unit
ORP	+999 to +999 mV	0.1 mV	±20 mV
Depth & Level Medium Shallow Vented Level		0.001 ft, 0.001 m 0.001 ft, 0.001 m 0.001 ft, 0.001 m	±0.4 ft, ±0.12 m ±0.06 ft, ±0.02 m ±0.01 ft, 0.003 m

Report outputs of specific conductance (conductivity corrected to 25° C), resistivity, and total dissolved solids are
also provided. These values are automatically calculated from conductivity according to algorithms found in Standard
Methods for the Examination of Water and Wastewater (ed 1989).

YSI 600XL & 600XLM Sonde Specifications				
Medium		Fresh, sea or polluted water		
Temperature	Operating Storage	-5 to +50°C -10 to +60°C		
Communications		RS-232, SDI-12		
Software		EcoWatch*		
Dimensions.	Diameter Length Weight	1.65 in, 4.19 cm 1.65 in, 4.9 cm 16 in, 40.6 cm 21.3 in, 54.1 cm 1.3 lbs, 0.59 kg 1.5 lbs, 0.69 kg		
Power Internal	External (600XLM only)	12 V DC 4 AA-size alkaline batteries		

YSI model 5083 flow cell and 600XL. This is an ideal combination for groundwater applications.

HI 98129

Combo pH/EC/TDS/Temperature Tester with Low Range EC

Description

The HI 98129 Combo waterproof tester offer high accuracy pH, EC/TDS and temperature measurements in a single tester! No more switching between meters for your routine measurements. The waterproof Combo (it even floats) has a large easy-to-read, dual-level LCD and automatic shut-off. pH and EC/TDS readings are automatically compensated for the effects of temperature (ATC). This technologically advanced tester has a replaceable pH electrode cartridge with an extendable cloth junction as well as an EC/TDS graphite electrode that resists contamination by salts and other substances. This gives these meters a greatly extended life. Your tester no longer needs to be thrown away when the pH sensor is exhausted.

The EC/TDS conversion factor is user selectable as is the temperature compensation coefficient (B). Fast, efficient, accurate and portable, the Combo pH, EC/TDS and temperature tester brings you all the features you've asked for and more!

S	pe	CI	ric	a	ti(TC	15	
			R	la	ng	е		
				-		_		

Range	pН	0.00 to 14.00 pH
Range	EC	0 to 3999 μS/cm
Range	TDS	0 to 2000 ppm
Range	Temperature	0.0 to 60.0°C / 32 to 140.0°F
Resolution	pН	0.01 pH
Resolution	EC	1 μS/cm
Resolution	TDS	1 ppm
Resolution	Temperature	0.1°C / 0.1°F
Accuracy	pН	±0.05 pH
Accuracy	EC/TDS	±2% F.S.
Accuracy	Temperature	±0.5°C / ±1°F
Temperature		pH: automatic; EC/TDS: automatic with ß adjustable
Compensation		from 0.0 to 2.4% / °C
Calibration	pН	automatic, 1 or 2 points with 2 sets of memorized
		buffers
		(pH 4.01 / 7.01 / 10.01 or 4.01 / 6.86 / 9.18)
Calibration	EC/TDS	automatic, 1 point
TDS Conversion Factor	or	adjustable from 0.45 to 1.00
pH Electrode		HI 73127 (replaceable; included)
Environment		0 to 50°C (32 to 122°F); RH max 100%
Battery Type / Life		4 x 1.5V / approx. 100 hours of continuous use;
		auto-off after 8 minutes of non-use
Dimensions		163 x 40 x 26 mm (6.4 x 1.6 x 1.0")
Weight		100 g (3.5 oz.)

HQ30d Portable pH, Conductivity, Dissolved Oxygen (DO), ORP, and ISE Multi-**Parameter Meter**

Product #: HQ30D53000000 Quantity
USD Price: \$790.00

**** 5/5 **1** Rend 1 review Write a review Follow this product

Portable meter measures critical water quality parameters - without the need for multiple

Instruments
Single input channel for flexible measurement of pH, Conductivity, Dissolved Oxygen (DO), BOD, ORP, Ammonia
Ammonium, Fluoride, Chloride, Sodium, and temperature - any Intel®CAL™ amant probe

Intuitive user interface for aimple operation and accurate results.

Guided calibration and check standard routines reduce calibration errors. Stabilization elerts and visual measurement lock ensure that you can truth the source; of the results.

Trust your measurements - intelliCAL** smart probes store all calibrations in the probe

Designed for demanding conditions Rugged, waterproof (IPS7) meter provides worry-free, reliable operation in lab or field environ

Convenient kit includes everything you need to start testing Meter kit includes, 4 AA batteries, quick-start guide, user manual, and documentation CD

AC and USB Operation

Automatic Buffer Recognition Color-coded: 4 01, 7.00, 10 01 pH, IUPAC: 1.679, 4 095, 7.000, 10 812, 12 45 DN 1.09, 4 65, 9323 User-defined custom buffer sets:

Barometric Pressure Measurement. For automatic compensation of DO when using an LDO or LBOD probe

Battery Requirements

BOD5/CBOD resolution Available when used with Hach WIMS BOD Manager software

Digital - not needed

Calibration curves display Calibration summary data logged and displayed

Calibration Intervals/Alerts/Reminder 2 hours to 7 days CE WEEE Compliance

Conductivity Accuracy ± 0 5 % from (1µS/cm - 200 mS/cm)

Conductivity measurement 5 different stability modes Conductivity Measurement Range: 0.01 µS/cm to 200 mS/cm Conductivity resolution 0 01 µS/cm with 2 digits

Custom Calibration Standards User-defined standard sets

Download via USB connection to PC or flash stick.
Automatically transfer entire data log or as readings are taken

Digital (intelligent) electrode inputs: 2

Dimensions (H x W x D)

7.8 in x 3.7 in x 1.4 in (197 mm x 95 mm x 36 mm)

7.8 in a 3 f in x 1 4 in 1187 mm x 95 mm x 36 mm)
Display readings from one or how probes
Simultaneous readings from two probes (HQ40d only)
Pl pl, mV, bramperature
Conductivity Conductivity, TDS, salinity, realizitify, temperature
LDO disadved oxygen, pressure, lemperature
LBOO disadved oxygen, pressure, temperature
Sodium Sodium, mV, temperature
Sodium Sodium, mV, temperature

Continuous measurement or press to read mode available with averaging function for LDO measurement.

Display Type: 240 x 160 pixel Display readings from one or two probes pH pH mV temperature
Conductivity Conductivity, TDS, salinity, resistivity, temperature
LDD dissolved oxygen, pressure, temperature
ORP/Redox nV temperature
Sodium, Sodium, mV, temperature

DO Measurement Range 0 01 to 20 mg/L (0 to 200%)

(UPAC standards (DIN 19266) or Tachnical buffer (DIN 19267) or 4-7-10 series or user defined

Inputs

Interface Languages Internal Data Storage IP Rating IP67

Languages: English, French, German, Italian, Spanish, Danish, Dutch, Palish, Portuguese Turkish, Sweedsh, Czech, Russian

mV Accuracy ± 0.1 mV

mV Measurement at Stable Reading 5 (auto) stabilization settings

mV Resolution 0.1 mV

Operating Error Messages Text messages displayed

Operating Humidity 90 % relative humidity (non-condensing) Operating Interface

Operating Temperature

Outputs

ORP Electrode Calibration Predefined ORP standards (including Zobeli's solution)

USB to PC / flash stick PC Data Transfer Software included pH Measurement at stable reading: 5 stabilization settings Printer Optional accessory

Salinity Resolution 0 01 ppt Warranty 3 years

Water Resisitance Meter Casing 1 meter submersion for 30 minutes (IP67)

0 74 lbs. (0 335 kg)

2100P and 2100P IS Portable Turbidimeter

Features and Benefits


Laboratory Quality in a Portable Unit

The Hach 2100P and 2100P IS Portable Turbidimeters offer a level of performance previously possible only with laboratory instruments. Microprocessor-controlled operation and Hach's unique Ratio™ optics bring great accuracy, sensitivity, and reliability to field and in-plant testing.

Two Models for Specific Requirements

- 2100P Turbidimeter—Get fast, accurate turbidity testing in the field or the lab, over a wide range of samples.

 Compliant with USEPA Method 180.1 design criteria.
- 2100P IS Turbidimeter—Designed to meet international standards that mandate measurement using an LED light source.

The two-detector optical system compensates for color in the sample, light fluctuation, and stray light, enabling analysts to achieve laboratory-grade performance on a wide range of samples, even under difficult, onsite conditions.

The Hach 2100P and 2100P IS Portable Turbidimeters bring laboratory-level performance on-site, offering fast, accurate results and the ease-of-use analysts demand in the field. With a measurement range of 0 to 1000 NTU and a resolution of 0.01 NTU, the 2100P turbidimeter is ideal for regulatory monitoring, process control or field studies.

F

Specifications*

	2100P	2100P IS				
Measurement Method	Nephelometric Ratio					
Regulatory	Meets EPA Method 180.1 Meets EN ISO 7027					
Light Source	Tungsten lamp Light-emitting diode (LED) @ 860 nm					
Range						
Automatic Range Mode	0 to 1000 NTU	0 to 1000 FNU				
Manual Range Selection	0 to 9.99, 0 to 99.9 and 0 to 1000 NTU	0 to 9.99, 0 to 99.9 and 0 to 1000 FNU				
Accuracy	±2% of reading plus stray light					
Repeatability	±1% of reading, or 0.01 NTU, whichever is greater	±1% of reading, or 0.01 FNU, whichever is greater				
Resolution	0.01 on lowest range					
Signal Averaging	Selectable on/off					
Power Requirement	4 AA alkaline batteries or optional battery eliminator					
Battery Life, Typical	300 tests with signal average mode off	300 tests with signal average mode off				
	180 tests with signal average mode on					
Operating Temperature	0 to 50°C (32 to 122°F)					
Sample Required	15 mL (0.5 oz.)	15 mL (0.5 oz.)				
Sample Cells	60 x 25 mm (2.36 x 1 in.) borosilicate glass with screv	60 x 25 mm (2.36 x 1 in.) borosilicate glass with screw caps				
Dimensions	22.2 x 9.5 x 7.9 cm (8.75 x 3.75 x 3.12 in.)					
Weight	0.5 kg (1.1 lb.); shipping weight 2.7 kg (6 lb.)	3				
Warranty	2 years					

*Specifications subject to change without notice.

2100Q and 2100Q is Portable Turbidimeter

The Hach 2100Q and 2100Q is Portable
Turbidimeters offer unsurpassed ease of use
and accuracy in turbidity measurement.
Only Hach offers this unique combination of
advanced features, such as assisted calibration
and simplified data transfer, and measurement
innovation, giving you accurate results every time.

Easy Calibration and Verification

Hach 2100Q and 2100Q *is* Portable Turbidimeters provide confidence your measurements are right every time. On-screen assisted calibration and verification save you time and ensure accuracy. With an easy-to-follow interface, complicated manuals are not needed to perform routine calibrations. Single-standard RapidCal™ calibration offers a simplified solution for low level measurements.

Simple Data Transfer

Data transfer with the optional USB + Power Module is simple, flexible, and doesn't require additional software. All data can be transferred to the module and easily downloaded to your computer with a USB connection, providing superior data integrity and availability. With two different module options, you can customize connectivity and power to meet your unique needs.

Accurate for Rapidly Settling Samples

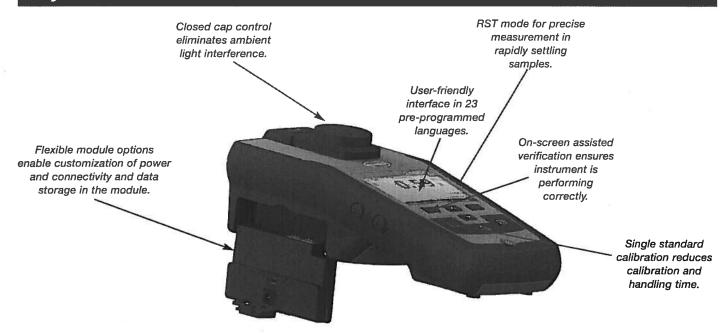
The Hach 2100Q Portable Turbidimeter incorporates an innovative Rapidly Settling Turbidity™ mode to provide accurate, repeatable measurements for difficult to measure, rapidly settling samples. An exclusive algorithm that

calculates turbidity based on a series of automatic readings eliminates redundant measurements and estimating.

Convenient Data Logging

Up to 500 measurements are automatically stored in the instrument for easy access and backup. Stored information includes: date and time, operator ID, reading mode, sample ID, sample number, units, calibration time, calibration status, error messages and the result.

Optical System for Precision in the Fleld


The two-detector optical system compensates for color in the sample, light fluctuation, and stray light, enabling analysts to achieve laboratory-grade performance on a wide range of samples, even under difficult site conditions.

Two Models for Specific Requirements

- 2100Q Turbidimeter—Compliant with USEPA Method 180.1 design criteria.
- 2100Q is Turbidimeter—Compliant with ISO 7027 design criteria.

HACH

Key Features

Specifications*

Measurement Method

Ratio turbidimetric determination using a primary nephelometric light scatter signal (90°) to the transmitted light scatter signal.

Regulatory

2100Q: Meets EPA Method 180.1 2100Q is: Meets ISO 7027

Light Source

2100Q: Tungsten filament lamp

2100Q is: Light-emitting diode (LED) @ 860 nm

Range

0 to 1000 NTU (FNU)

Accuracy

±2% of reading plus stray light from 0 to 1000 NTU

Repeatability

±1% of reading, or 0.01 NTU (FNU), whichever is greater

Resolution

0.01 NTU on lowest range

Stray Light

<0.02 NTU (FNU)

Signal Averaging

Selectable on/off

Detector

Silicon photovoltaic

Reading Modes (user selectable)

Normal (Push to Read) Signal Averaging Rapidly Settling Turbidity

Data Logger

500 records

Power Requirement

110-230 Vac, 50/60 Hz (with Power or USB+Power Module)

4 AA alkaline batteries

Rechargeable NiMH (for use with USB+Power Module)

Operating Conditions

Temperature: 0 to 50°C (32 to 122°F)
Relative Humidity: 0 to 90% @ 30°C,
0 to 80% @ 40°C, 0 to 70% @ 50°C, noncondensing

Storage Conditions

-40 to 60°C (-40 to 140°F), instrument only

Languages

English, French, German, Italian, Spanish, Portuguese (BR), Portuguese (PT), Bulgarian, Chinese, Czech, Danish, Dutch, Finnish, Greek, Hungarian, Japanese, Korean, Polish, Romanian, Russian, Slovenian, Swedish, Turkish

Interface

Optional USB

Instrument Enclosure Rating

IP67 (closed lid, battery compartment excluded)

Protection Class

Power Supply: Class II

Certification

CE certified

Sample Required

15 mL (0.3 oz.)

Sample Cells

60 x 25 mm (2.36 x 1 in.) borosilicate glass with screw cap

Dimensions

22.9 x 10.7 x 7.7 cm (9.0 x4.2 x 3.0 in.)

Weight

527 g (1.16 lb) without batteries

618 g (1.36 lb) with four AA alkaline batteries

Warranty

1 year

Marsh-McBirney Flo-Mate™ Portable Velocity Flow Meter

The Flo-Mate 2000 is a hand held, battery powered point velocity meter. It is lightweight yet rugged with no moving parts, water resistant with data storage/recall capabilities and fixed period averaging.

Features and Benefits

Flo-Mate—the Industry Standard for Over 35 Years

Determine volumetric flow in rivers, streams, irrigation ditches, sanitary pipes, or wherever water flows. Check the calibration of existing flow meters, as well as performance of weirs and flumes. Features that make Flo-Mate your clear choice of velocity meters include instantaneous readout, lightweight, rugged field construction with no moving parts, water resistant enclosure, and battery operation.

Flo-Mate's proven electromagnetic velocity sensor assures you of unsurpassed accuracy and dependability.

When the sensor is placed in flowing water, its magnetic field creates a voltage. This voltage is sensed by electrodes embedded in the sensor and is transmitted through the cable to the meter. The voltage amplitude, representing the rate of water flowing around the sensor, is electronically processed and displayed on the instrument panel. Turbulent/noisy flows are also easily metered with Flo-Mate's two user-selectable data averaging features—Fixed Period Averaging or Time Constant Mode.

Applications

- Streams & Rivers
- Weir/Flume/Flow Meter Calibration
- Sewers
- · Mining Channels
- Irrigation Channels
- Most Open Channels

Features That Make the Difference

- Instantaneous readout of flow velocity
- Ideal for performance verification of flumes, weirs and other primary devices
- Check calibration of existing flow meters
- Proven electromagnetic sensor
- · Water resistant electronics
- Lightweight only 3.5 pounds
- Data Storage/Recall
- Rugged case made of high impact molded materials
- Measures low flows
- Direct replacement for USGS type mechanical meters
- Adjustable filter modes: Time constant or fixed period averaging
- System self-check function
- · Battery saver mode/auto shut-off
- · Battery powered—rechargeable or disposable
- · Bar graph displays timing information
- · Optional disconnectable sensor available

E

C

Specifications and Ordering Information

FLO-MATE FLOW METER VELOCITY MEASUREMENT

Range

-0.5 to +20 ft./s (-0.15 to 6 m/s)

Zero Stability

±0.05 ft./s

Accuracy

±2% of reading plus zero stability

Method

Electromagnetic

Output

Display: 3 1/2 digit

Materials

Sensor: Polyurethane Cable: Polyurethane jacket

Electronic Case: High impact molded

plastic-NEMA 4X

Environmental

Sensor: 0 to 72°C (32 to 160°F) Electronics: 0 to 50°C (32 to 122°F)

Power Requirements

Batteries: Two D Cells

Alkaline Battery Life: 25-30 continuous

ON hours

Weight

With sensor and 20 ft. of cable:

1.6 kg (3.5 lbs.)

Without sensor: 1.1 kg (2.5 lbs.)

Engineering Specifications

- The flow meter shall be capable of providing an instantaneous readout of flow velocity.
- 2. The method of velocity measurement shall be electromagnetic.
- 3. The range of velocity measurement shall be -0.15 to 6 m/s (-0.5 to +20 ft./s).
- The flow meter shall measure low flows.
- The flow meter shall be capable of storage and recall of up to 19 data points while profiling in the field.
- 6. The flow meter shall have an external charging capability.
- 7. The flow meter shall have adjustable filter modes of time constant or fixed period average.
- 8. The flow meter shall have a system self-check function.
- 9. The flow meter shall have a battery saver mode/auto shut-off.

- The flow meter shall be battery powered using rechargeable or disposable batteries.
- 11. The flow meter shall have a bar graph that displays timing information.
- 12. The flow meter shall have an optional disconnectable sensor available.
- 13. The flow meter shall have no moving parts.
- 14. The flow meter shall be water resistant.
- 15. The flow meter shall be portable.
- 16. The weight of the flow meter shall be no greater than 1.1 kg (2.5 lbs.) without the sensor and no greater than 1.6 kg (3.5 lbs.) with the sensor and 20 feet of
- The flow meter shall be the Marsh-McBirney Flo-Mate Portable Velocity Flow Meter.

		Sensor Cable Connector	Sensor	Sensor Cable
Flo-Mate	Model 2000-			
No Sensor Connector		1		
Sensor with Disconnect		5		
Open Channel Velocity Sensor-Std			1	
20 Ft. Cable (Std)				0
Cable as needed Max Cable 100 Ft.				9

Accessories

75002 Standard Wading Rod Kit, English—consists of four 2-foot long sections marked in tenth foot increments, double end hanger, and base plate.

75002M Standard Wading Rod Kit, Metric—same as 75002 but marked in metric units. Top-Setting Wading Rod Kit, English—permits convenient setting of sensor.

Marked in tenth foot increments.

75013M Top-Setting Wading Rod Kit, Metric—same as 75013 but marked in metric units.
 75003 Suspension Cable Kit - consists of a 15 lb. Finned weight, and hanger. Specify length of stainless steel cable required.

NOTE: Additional cable cannot be added after order is entered. Contact factory for lengths greater than 100 ft.

Lit. No. 2636 Rev 1

L92 Printed in U.S.A.

©Hach Company, 2009. All rights reserved.

In the interest of improving and updating its equipment, Hach Company reserves the right to alter specifications to equipment at any time.

At Hach, it's about learning from our customers and providing the right answers. It's more than ensuring the quality of water—it's about ensuring the quality of life. When it comes to the things that touch our lives...

Keep it pure.

Make it simple.

Be right.

For current price information, technical support, and ordering assistance, contact the Hach office or distributor serving your area.

In the United States and all other countries except Europe, contact:

HACH COMPANY 4539 Metropolitan Court Frederick, MD 21704-9452, U.S.A. Telephone: 800-368-2723

Fax: 301-874-8459

E-mail: hachflowsales@hach.com

www.hachflow.com

In Europe contact:

Flow-Tronic
Rue J.H. Cool 19a
B-4840 Welkenraedt Belgium
Telephone: +32-87-899799
Fax: +32-87-899790
E-mail: site@flow-tronic.com

www.flow-tronic.com

Digital Handheld Water Velocity Meters

Global Water's FP111, FP211 and FP311 Flow Probes are highly accurate water velocity instruments for measuring flows in open channels and partially filled pipes. The water velocity probe consists of a protected water turbo prop positive displacement sensor coupled with an expandable probe handle ending in a digital readout display. The water flow meter incorporates true velocity averaging for the most accurate flow measurements.

Each flow probe has the unique Turbo-Prop propeller sensor, which uses the most accurate positive displacement technique available for velocity sensing. The Turbo-Prop is designed to shed debris and is protected inside a 2 inch diameter housing. The probe housing may be placed directly on the bottom of a pipe or streambed for measuring low flows down to 2 inches in depth. The flow meter propeller rotates freely on its bearing shaft with no mechanical interconnections for minimal friction.

The water velocity computer receives an electrical signal from the propeller, amplifies the signal, and converts the reading to feet or meters per second. The large LCD screen displays average, minimum, and maximum water velocity readings. The water velocity computer has a water-resistant housing and incorporates a unique four-button operation for changing functions and resetting the display. The water velocity computer is powered by a non-replaceable battery that will last approximately five years with normal use.

The Flow Probe handle can telescope from 3.7 feet to 6 feet in length (FP111), 5.5 feet to 15 feet (FP211), or 2.5 feet to 5.5 feet (FP311). The handle is constructed of anodized aluminum for light weight and long life. All three meters have a Swivel Head option that allows you to rotate the flow probe's turbo prop to +/- 90 degrees from it's standard position. This option lets the flow probe take water velocity measurements in hard to measure areas

The Global Water Flow Probe Alignment Fin is designed to help orient the flow probe parallel to flow when the end of the probe can't be seen well due to the depth or cloudiness of the water. This significantly reduces the chance for error that can occur when measuring water flow other than directly parallel to the direction of flow.

Surface water

Wastewater

- Records 30 data sets.
- Rain-proof digital computer
- Highly accurate easy flow monitoring
- Lightweight, rugged, and reliable
- Telescoping handle with staff gauge
- Padded carrying case for easy storage
- CE Certified
- Used by water professional worldwide since 1990

Flow probe prop housing with optional alignment fin.

Flow probe digital readout display

Specifications

Velocity Meter

velocity wieter	velocity weter				
Range	0.3-19.9 FPS (0.1-6.1 MPS)				
Accuracy	0.1 FPS				
Averaging	True digital running average. Updated once per second.				
Display	LCD, Glare and UV Protected				
Control	4 button				
Datalogger	30 sets, MIN, MAX, and AVG				
Features	Timer, Low battery warning				
Sensor Type	Protected Turbo-Prop propeller with magnetic pickup.				
Weight	Instrument: 2 lbs. (0.9 kg) (FP111), 3 lbs. (1.4 kg) (FP211), 2.8 lbs. (1.3 kg) (FP311) Shipping: 13 lbs. (5.9 kg) (FP111), 23 lbs. (10.4 kg) ((FP211), 19 lbs. (8.6 kg) ((FP311)				
Expandable Length	3.7 to 6 ft (1.1 to 1.8 m) (FP111); 5.5 to 15 ft (1.7 to 4.6 m) (FP211); 2.5 to 5.5 ft (0.76 to 1.7 m) (FP311)				
Materials	Probe: PVC and anodized aluminum with stainless steel water bearing Computer: ABS/Polycarbonate housing with polyester overlay				
Power	Internal Lithium Battery, Approx 5 year life with typical use, Non-Replaceable				
Auto Shutoff	After 5 minutes of inactivity				
Operating Temperature	-4° to 158° F (-20° to 70° C)				
Storage Temperature	-22° to 176° F (-30° to 80° C)				
Carrying Case	The Flow Probe is shipped in a padded carrying case.				
Certificates	CE				
	For Ordering information and Options; please visit www.globalw.com/products/flowprobe.html				

Appendix D

NEORSD Chlorophyll a Sampling Field Sheet

				Collectors				
RM:				Time:				
Lat/Long:_								
Number of	Rocks:		Total Area Scra	ped:	cm ²	[D:		7
Diameter o	f individual s	crape	Area of individu	al scrape		Diameter to Ard Diameter (cm)		
			1			1.6	2.011	
			2			1.7	2.27	
			3			1.8	2.545	
	·		4			1.9	2.835	
			5			2.0	3.142	
			6			2.1	3.464	
			7			2.2	3.801	
	·		8			2.3	4.155	
9			9					
10			10			Total Sample V		
11			11		Filter 1	LABLynx ID		
12			12			Vol	ml	
13			13					
			14		Filter 2	LABLynx ID		
			15			Vol	ml	
			16					
			17		Filter 3	LABLynx ID		
			18			Vol	ml	
			19					
			20					
			21			Nater Column C		•
			22		Filter 1	LABLynx ID		
			23			Vol	ml	
			24					
25			25		Filter 2	LABLynx ID		
			Total:			Vol	_ml	
					Filter 3	LABLynx ID		
						Vol	_ml	
Flow:	None	Low	Normal	Elevated		High		
Turbidity:	Clear	Low	Moderate*	High*				
*Explain								
Sky:	Overcast	Cloudy	Partly Cloudy	Mostly Cle	ar	Clear		
Canopy:	Open	Mostly Open	Partly Closed	Closed				

Narrow L R Moderate L R Wide L R

Riparian None

Downstream Channel Direction	Record two most predominate substrates with an X, and check all present.
330° N 30° 60° 270° W E 90° 120° 120°	Riffle Run Reach Boulder/Slabs Bedrock Boulder/Slabs Cobble Gravel Sand Silt Hardpan Detritus Artificial
Clinometer Left Bank° Right Bank°	Substrate Origin LimestoneTillsRip-rap SandstoneShaleWetlands LacustrineHardpanCoal Fines
Left Bank° Right Bank°	Silt HeavyModerateNormalNone
Left Bank° Right Bank°	EmbeddednessExtensiveModerateNormalNone
Stream Widthsmmm	

Length of Reach: _____m

Stream Drawing

Appendix E

DEPARTMENT OF ENVIRONMENTAL PROTECTION COMMONWEALTH OF PENNSYLVANIA

OFFICE OF FIELD OPERATIONS

BUREAU OF LABORATORIES

Certifies that

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES **CUYAHOGA HEIGHTS, OH 44125** 4747 EAST 49TH STREET 68-03670

Having duly met the requirement of

The Act of June 29, 2002 (P.L. 596, No. 90)

dealing with Environmental Laboratory Accreditation

(27 Pa. C.S. §§4101-4113) and the

National Environmental Laboratory Accreditation Conference Standard

is hereby approved as an

Accredited Laboratory

As more fully described in the attached Scope of Accreditation

Expiration Date: 11/30/2013 Certificate Number: 006

Continued accreditation status depends on successful ongoing participation in the Program Certificate not transferable. Surrender upon revocation.

To be conspicuously displayed at the Laboratory.

Not valid unless accompanied by a valid Scope of Accreditation.

Shall not be used to imply endorsement by the Commonwealth of Pennsylvania.

Customers are urged to verify the laboratory's current accreditation status.

PA DEP is a NELAP recognized accreditation body

Aaren 8. Alger, Chief Laboratory Accreditation Program 1500-FM-LAB0016 Rev. 8/2009

Bureau of Laboratories

Attached to Certificate of Accreditation 006-002 expiration date November 30, 2013. This listing of accredited analytes should be used only when associated with a valid certificate of accreditation.

DEP Laboratory ID: 68-03670

EPA Lab Code: OH00300

TNI Code:

(216) 641-6000

Northeast Ohio Regional Sewer District Analytical Services 4747 East 49th Street

Cuyahoga Heights, OH 44125

Matri	v. No	-Doto	hla	Water
IVIAITI	K. IMEN	1-P() X	ne	WHIEL

Method	Revision	Analyte	Accreditation Type	Primary	Effective Date
ASTM D4839-03		Total organic carbon (TOC)	NELAP	PA	11/17/2010
EPA 1000.0		Pimephales promelas	NELAP	PA	1/8/2009
EPA 1002.0		Ceriodaphnia dubia	NELAP	PA	1/8/2009
EPA 160.4		Residue, volatile	NELAP	PA	10/22/2008
EPA 1600		Enterococci	NELAP	PA	11/22/2010
EPA 1603		E. coli (Enumeration)	NELAP	PA	11/29/2007
EPA 1631		Mercury	NELAP	PA	3/31/2008
EPA 1664	Α	Oil and grease	NELAP	PA	11/29/2007
EPA 180.1		Turbidity	NELAP	PA	12/31/2007
EPA 200.7	4.4	Aluminum	NELAP	PA	11/29/2007
EPA 200.7	4.4	Antimony	NELAP	PA	11/29/2007
EPA 200.7	4.4	Arsenic	NELAP	PA	11/29/2007
EPA 200.7	4.4	Barium	NELAP	PA	11/29/2007
EPA 200.7	4.4	Beryllium	NELAP	PA	11/29/2007
EPA 200.7	4.4	Cadmium	NELAP	PA	11/29/2007
EPA 200.7	4.4	Calcium	NELAP	PA	11/29/2007
EPA 200.7	4.4	Chromium	NELAP	PA	11/29/2007
EPA 200.7	4.4	Cobalt	NELAP	PA	11/29/2007
EPA 200.7	4.4	Copper	NELAP	PA	12/31/2007
EPA 200.7	4.4	lron	NELAP	PA	11/29/2007
EPA 200.7	4.4	Lead	NELAP	PA	11/29/2007
EPA 200.7	4.4	Magnesium	NELAP	PA	11/17/2010
EPA 200.7	4.4	Manganese	NELAP	PA	11/29/2007
EPA 200.7	4.4	Molybdenum	NELAP	PA	11/29/2007
EPA 200.7	4.4	Nickel	NELAP	PA	11/29/2007
EPA 200.7	4.4	Potassium	NELAP	PA	12/31/2007
EPA 200.7	4.4	Selenium	NELAP	PA	11/29/2007
EPA 200.7	4.4	Silver	NELAP	PA	11/29/2007
EPA 200.7	4.4	Sodium	NELAP	PA	12/31/2007
EPA 200.7	4.4	Thallium	NELAP	PA	11/29/2007
EPA 200.7	4.4	Tin	NELAP	PA	11/29/2007
EPA 200.7	4.4	Titanium	NELAP	PA	11/29/2007
EPA 200.7	4.4	Vanadium	NELAP	PA	11/29/2007
EPA 200.7	4.4	Zinc	NELAP	PA	12/31/2007
EPA 245.1	3	Mercury	NELAP	PA	11/29/2007
EPA 300.0	2.1	Bromide	NELAP	PA	11/22/2010
EPA 300.0	2.1	Chloride	NELAP	PA	11/22/2010
EPA 300.0	2.1	Fluoride	NELAP	PA	11/22/2010
EPA 300.0	2.1	Nitrate as N	NELAP	PA	11/22/2010
EPA 300.0	2.1	Nitrite as N	NELAP	PA	11/22/2010

The Pennsylvania Department of Environmental Protection Laboratory Accreditation Program is a NELAP recognized Accreditation Body. Customers are urged to verify the laboratory's current accreditation standing.

Attached to Certificate of Accreditation 006-002 expiration date November 30, 2013. This listing of accredited analytes should be used only when associated with a valid certificate of accreditation.

DEP Laboratory ID: 68-03670

EPA Lab Code: OH00300

TNI Code:

(216) 641-6000

Matrix: Non-Potable Water

Method	Revision	Analyte	Accreditation Type	Primary	Effective Date
EPA 300.0	2.1	Orthophosphate as P	NELAP	PA	11/22/2010
EPA 300.0	2.1	Sulfate	NELAP	PA	11/22/2010
EPA 3005	Α	Preconcentration under acid	NELAP	PA	11/29/2007
EPA 3010	Α	Hot plate acid digestion (HNO3 + HCl)	NELAP	PA	11/29/2007
EPA 3015		Microwave-assisted acid digestion	NELAP	PA	11/29/2007
EPA 310.2		Alkalinity as CaCO3	NELAP	PA	9/20/2012
EPA 325.2		Chloride	NELAP	PA	11/17/2010
EPA 350.1		Ammonia as N	NELAP	PA	11/29/2007
EPA 351.2		Kjeldahl nitrogen, total (TKN)	NELAP	PA	11/17/2010
EPA 353.2		Nitrate as N	NELAP	PA	11/29/2007
EPA 353.2		Total nitrate-nitrite	NELAP	PA	11/17/2010
EPA 365.1		Orthophosphate as P	NELAP	PA	11/29/2007
EPA 365.1		Phosphorus, total	NELAP	PA	10/22/2008
EPA 410.4		Chemical oxygen demand (COD)	NELAP	PA	11/29/2007
EPA 420.4		Total phenolics	NELAP	PA	11/17/2010
EPA 445		Chlorophyll A	NELAP	PA	11/22/2010
EPA 6010	В	Aluminum	NELAP	PA	11/29/2007
EPA 6010	В	Antimony	NELAP	PA	11/29/2007
EPA 6010	В	Arsenic	NELAP	PA	11/29/2007
EPA 6010	В	Barium	NELAP	PA	11/29/2007
EPA 6010	В	Beryllium	NELAP	PA	11/29/2007
EPA 6010	В	Cadmium	NELAP	PA	11/29/2007
EPA 6010	В	Calcium	NELAP	PA	11/29/2007
EPA 6010	В	Chromium	NELAP	PA	11/29/2007
EPA 6010	В	Cobalt	NELAP	PA :	11/29/2007
EPA 6010	В	Copper	NELAP	PA	12/31/2007
EPA 6010	В	lron	NELAP	PA	11/29/2007
EPA 6010	В	Lead	NELAP	PA	11/29/2007
EPA 6010	В	Magnesium	NELAP	PA	11/29/2007
EPA 6010	В	Manganese	NELAP	PA	11/29/2007
EPA 6010	В	_		PA PA	11/29/2007
EPA 6010	В	Molybdenum Nickel	NELAP	PA	11/29/2007
			NELAP	PA PA	
EPA 6010	В	Potassium	NELAP	PA PA	12/31/2007
EPA 6010	В	Selenium	NELAP		11/29/2007
EPA 6010	В	Silver	NELAP	PA	11/29/2007
EPA 6010	В	Sodium	NELAP	PA	12/31/2007
EPA 6010	В	Thallium	NELAP	PA	11/29/2007
EPA 6010	В	Tin	NELAP	PA	11/29/2007
EPA 6010	В	Titanium	NELAP	PA	11/29/2007
EPA 6010	В	Vanadium	NELAP	PA	11/29/2007
EPA 6010	В	Zinc	NELAP	PA	12/31/2007
EPA 7470		Mercury	NELAP	PA	11/29/2007
Enterolert		Enterococci (Enumeration)	NELAP	PA	11/22/2010
Lachat 10-204-00-1X		Cyanide	NELAP	PA	11/17/2010
O1A 1677		Available cyanide	NELAP	PA	11/29/2007
SM 2540 B		Residue, total	NELAP	PA	11/29/2007
SM 2540 C		Residue, filterable (TDS)	NELAP	PA	11/29/2007

The Pennsylvania Department of Environmental Protection Laboratory Accreditation Program is a NELAP recognized Accreditation Body. Customers are urged to verify the laboratory's current accreditation standing.

Page 2 of 4 www.dep.state.pa.us Issue Date: 01/24/2013

Attached to Certificate of Accreditation 006-002 expiration date November 30, 2013. This listing of accredited analytes should be used only when associated with a valid certificate of accreditation.

DEP Laboratory ID: 68-03670

EPA Lab Code: OH00300

TNI Code:

(216) 641-6000

Issue Date: 01/24/2013

Matrix: Non-Potable Water

Method	Revision	Analyte	Accreditation Type	Primary	Effective Date
SM 2540 D	2.0	Residue, nonfilterable (TSS)	NELAP	PA	11/29/2007
SM 2540 F		Residue, settleable	NELAP	PA	11/29/2007
SM 2550 B		Temperature, deg. C	NELAP	PA	10/22/2008
SM 3500-Cr B	20/21	Chromium VI	NELAP	PA	11/29/2007
SM 4500-CN- C/E		Total cyanide	NELAP	PA	11/29/2007
SM 4500-CN- G		Amenable cyanide	NELAP	PA	11/29/2007
SM 4500-CI E		Total residual chlorine	NELAP	PA	11/29/2007
SM 4500-CI- C		Chloride	NELAP	PA	11/19/2012
SM 4500-H+ B		pH	NELAP	PA	11/29/2007
SM 4500-NO2- B		Nitrite as N	NELAP	PA	11/29/2007
SM 4500-Norg B		Kjeldahl nitrogen, total (TKN)	NELAP	PA	10/22/2008
SM 4500-P B		Preliminary treatment of phosphate samples	NELAP	PA	1/22/2013
SM 4500-P E		Orthophosphate as P	NELAP	PA	1/22/2013
SM 4500-S D		Sulfide	NELAP	PA	11/22/2010
SM 5210 B		Biochemical oxygen demand (BOD)	NELAP	PA	11/29/2007
SM 5210 B		Carbonaceous BOD (CBOD)	NELAP	PA	11/29/2007
SM 9222 D		Fecal coliform (Enumeration)	NELAP	PA	11/29/2007
SM 9223 Colilert MPN or QT		E. coli (Enumeration)	NELAP	PA	11/29/2007
SM 9223 Colilert MPN or OT		Total coliform (Enumeration)	NELAP	PA	11/22/2010

Matrix: Solid and Chemical Materials

Method	Revision	Analyte	Accreditation Type	Primary	Effective Date
EPA 245.1	3	Mercury	NELAP	PA	11/22/2010
EPA 3051		Microwave digestion of solids (HNO3 only)	NELAP	PA	11/17/2010
EPA 6010	В	Aluminum	NELAP	PA	11/22/2010
EPA 6010	В	Arsenic	NELAP	PA	11/22/2010
EPA 6010	В	Barium	NELAP	PA	11/22/2010
EPA 6010	В	Beryllium	NELAP	PA	11/22/2010
EPA 6010	В	Boron	NELAP	PA	11/22/2010
EPA 6010	В	Cadmium	NELAP	PA	11/22/2010
EPA 6010	В	Calcium	NELAP	PA	11/22/2010
EPA 6010	В	Chromium	NELAP	PA	11/22/2010
EPA 6010	В	Cobalt	NELAP	PA	11/22/2010
EPA 6010	В	Copper	NELAP	PA	11/22/2010
EPA 6010	В	lron	NELAP	PA	11/22/2010
EPA 6010	В	Lead	NELAP	PA	11/22/2010
EPA 6010	В	Magnesium	NELAP	PA	11/22/2010
EPA 6010	В	Manganese	NELAP	PA	11/22/2010
EPA 6010	В	Metals by 1CP/AES	NELAP	PA	1/22/2013
EPA 6010	В	Molybdenum	NELAP	PA	11/22/2010
EPA 6010	В	Nickel	NELAP	PA	11/22/2010
EPA 6010	В	Potassium	NELAP	PA	11/22/2010
EPA 6010	В	Selenium	NELAP	PA	11/22/2010
EPA 6010	В	Silver	NELAP	PA	11/22/2010

auen alger

The Pennsylvania Department of Environmental Protection Laboratory Accreditation Program is a NELAP recognized Accreditation Body. Customers are urged to verify the laboratory's current accreditation standing.

Attached to Certificate of Accreditation 006-002 expiration date November 30, 2013. This listing of accredited analytes should be used only when associated with a valid certificate of accreditation.

DEP Laboratory ID: 68-03670

EPA Lab Code: OH00300

TNI Code:

(216) 641-6000

Issue Date: 01/24/2013

Matrix: Solid and Chemical Materials

Method	Revision	on Analyte	Accreditation Type	Primary	Effective Date
EPA 6010	В	Sodium	NELAP	PA	11/22/2010
EPA 6010	В	Thallium	NELAP	PA	11/22/2010
EPA 6010	В	Titanium	NELAP	PA	11/22/2010
EPA 6010	В	Vanadium	NELAP	PA	11/22/2010
EPA 6010	В	Zinc	NELAP	PA	11/22/2010

Laboratory Status Summary

DEP Laboratory ID: 68-03670

EPA Lab Code: OH00300

TNI Code:

(216) 641-6000

Northeast Ohio Regional Sewer District Analytical Services 4747 East 49th Street

Cuyahoga Heights, OH 44125

Matrix: Non-Potable Water

Method	Revision	Analyte	Status	Effective Date
EPA 200.7	4.4	Strontium	Applied	11/7/2012
EPA 200.8	5.4	Aluminum	Applied	11/7/2012
EPA 200.8	5.4	Antimony	Applied	11/7/2012
EPA 200.8	5.4	Arsenic	Applied	11/7/2012
EPA 200.8	5.4	Barium	Applied	11/7/2012
EPA 200.8	5.4	Beryllium	Applied	11/7/2012
EPA 200.8	5.4	Cadmium	Applied	11/7/2012
EPA 200.8	5.4	Chromium	Applied	11/7/2012
EPA 200.8	5.4	Cobalt	Applied	11/7/2012
EPA 200.8	5.4	Copper	Applied	11/7/2012
EPA 200.8	5.4	Lead	Applied	11/7/2012
EPA 200.8	5.4	Manganese	Applied	11/7/2012
EPA 200.8	5.4	Molybdenum	Applied	11/7/2012
EPA 200.8	5.4	Nickel	Applied	11/7/2012
EPA 200.8	5.4	Selenium	Applied	11/7/2012
EPA 200.8	5.4	Silver	Applied	11/7/2012
EPA 200.8	5.4	Thallium	Applied	11/7/2012
EPA 200.8	5.4	Vanadium	Applied	11/7/2012
EPA 200.8	5.4	Zinc	Applied	11/7/2012
SM 5310 C		Total organic carbon (TOC)	Suspended	4/14/2009

Matrix: Solid and Chemical Materials

Method	Revision	Analyte	Status	Effective Date
EPA 6010	В	Antimony	Suspended	5/21/2012
EPA 6010		Strontium	Applied	11/7/2012
EPA 6010	В	Tin	Applied	10/22/2008
EPA 6020		Aluminum	Applied	11/7/2012
EPA 6020		Antimony	Applied	11/7/2012
EPA 6020		Arsenic	Applied	11/7/2012
EPA 6020		Barium	Applied	11/7/2012
EPA 6020		Beryllium	Applied	11/7/2012
EPA 6020		Cadmium	Applied	11/7/2012
EPA 6020		Chromium	Applied	11/7/2012
EPA 6020		Cobalt	Applied	11/7/2012
EPA 6020		Copper	Applied	11/7/2012
EPA 6020		Iron	Applied	11/7/2012
EPA 6020		Lead	Applied	11/7/2012
EPA 6020		Magnesium	Applied	11/7/2012
EPA 6020		Manganese	Applied	11/7/2012
EPA 6020		Nickel	Applied	11/7/2012
EPA 6020		Selenium	Applied	11/7/2012
EPA 6020		Silver	Applied	11/7/2012
EPA 6020		Thallium	Applied	11/7/2012
EPA 6020		Vanadium	Applied	11/7/2012
EPA 6020		Zinc	Applied	11/7/2012
EPA 6020-Extended		Molybdenum	Applied	11/7/2012

Print Date: 01/24/2013

Laboratory Status Summary

DEP Laboratory ID: 68-03670

EPA Lab Code: OH00300

TNI Code:

(216) 641-6000

Matrix: Solid and Chemical Materials

Method	Revision Anal	yte State	18 Effective Date
EPA 6020-Extended	Tin	Applied	11/7/2012
EPA 6020-Extended	Titaniu Titaniu	m Applied	11/7/2012

Appendix F

May 29, 2013

Mr. John Rhoades Supervisor of Environmental Assessment Northeast Ohio Regional Sewer District 4747 East 49th Street Cuyahoga Heights, Ohio 44125

Dear Mr. Rhoades:

This letter is to acknowledge that I am responsible for the identification of benthic macroinvertebrates for the following Northeast Ohio Regional Sewer District Study Plans:

- 2013 Big Creek Environmental Monitoring
- 2013 Chagrin River Environmental Monitoring
- 2013 Cuyahoga River Environmental Monitoring
- 2013 Doan Brook Environmental Monitoring
- 2013 Euclid Creek Environmental Monitoring
- 2013 Green Creek Environmental Monitoring
- 2013 Mill Creek Environmental Monitoring
- 2013 Nine-Mile Creek Environmental Monitoring
- 2013 Shaw Brook Environmental Monitoring
- 2013 West Creek Environmental Monitoring

It is understood that an Ohio Environmental Protection Agency Level 3 Qualified Data Collector Certification for Benthic Macroinvertebrate, with the specialty of identification, is required to perform these tasks and that I am responsible for maintaining my Level 3 QDC Certification during the term of these Study Plans.

In addition, I have not been convicted nor pleaded guilty to a Violation of section 2911.21 of the Revised Code (criminal trespass) or a substantially similar municipal ordinance within the previous five years.

Sincerely,

Bert Remley Senior Taxonomist 859-977-2000

Bremley@thirdrockconsultants.com

albert AV. Kemley I

Appendix G

Division of Wildlife Headquarters 2045 Morse Road, Bldg. G Columbus, Ohio 43229-6693 1-800-WILDLIFE

Scott Zody

DATE ISSUED

Chief, Division of Wildlife

3/25/2013

Others authorized on permit

YES (SEE ATTACHMENT)

JOHN W. RHOADES

WILD ANIMAL PERMIT:

SCIENTIFIC COLLECTION

NEORSD 4747 EAST 49TH ST.

CUYAHOGA HEIGHTS, OH 44125-1

SOCIAL SECURITY NUMBER:

XXX-XX-7681

is hereby granted permission to take, possess, and transport at any time and in any manner specimens of wild animals, subject to the conditions and restrictions listed below or any documents accompanying this permit.

This permit, unless revoked earlier by the Chief, Division of Wildlife, is effective

14-307

from:

3/16/2013

to:

3/15/2014

This permit must be carried while collecting wild animals and be exhibited to any person on demand.

THIS PERMIT IS RESTRICTED TO THE FOLLOWING:

- 1. Permittee may collect fish, macroinvertebrates, amphibians and mussels for survey and inventory purposes. All endangered species are to be released at site of capture. Dead mussel shells not easily identified, may be collected and taken to NEORSD.
- 2. Common species of fish may be collected and displayed for educational purposes. Fish must be displayed at NEORSD or the Greater Cleveland Aquarium or other public educational facility. They may not be maintained at a private residence. Sport fish >6 in. must be immediately released.
- 3. Permittee must follow guidelines of the Biosecurity Protocol for Herpetofauna Field Work included with permit.
- 4. Permittee must consult with Wildlife's Stream Conservation and Environmental Assessment Unit (SCEA) prior to conducting any wild animal work associated with compliance requirements of the Clean Water Act (CWA) Section 401 and/or 404. Contact the unit at 614/265-6346 (John Navarro).
- 5. Twenty-four (24) hours prior to collection, contact must be made with the local wildlife officer or the nearest Wildlife District Office to advise location and duration of sampling.

All vouchers are to be deposited at NEORSD.

- 6. Collection is prohibited in the Killbuck, Big Darby, Little Darby, tributaries to and east branch of the Chagrin River above I-90, Fish Creek (Williams County) and Division of Wildlife property without explicit written permission from the Division of Wildlife. Sampling is further restricted in streams that may have federally listed mussels. See the enclosed "USFWS Restricted Streams of Ohio" document for a list of streams and contact information.
- 7. Permittee must provide an annual electronic report of collecting activities in the Diversity Database Excel spreadsheet format to the Division of Wildlife.

Locations of Collecting

STATEWIDE WITH NOTED EXCEPTIONS

Equipment and method used in collection:

SEINES, TRAP NETS, ELECTROSHOCKER AND HAND COLLECTION.

Name and number of each species to be collected:

FISH, MACROINVERTEBRATES, MUSSELS AND AMPHIBIANS AS REQUIRED. DEAD MUSSEL SHELLS MAY ALSO BE COLLECTED AS NECESSARY FOR IDENTIFICATION. COMMON FISH SPECIES MAY BE KEPT FOR EDUCATIONAL PURPOSES. ALL ENDANGERED SPECIES MUST BE IMMEDIATELY RELEASED.

RESTRICTIVE DOCUMENTS ACCOMPANYING THIS PERMIT? YES

NO ENDANGERED SPECIES MAY BE TAKEN WITHOUT WRITTEN PERMISSION FROM THE CHIEF

ATTACHMENT

This attachment to Scientific Collecting Permit # 14-307 authorizes the following persons to conduct the activities listed on the permit, within the conditions and restrictions set forth. Each person must carry and exhibit upon request, a copy of the permit and this attachment when conducting any of the listed activities. The person named on the permit assumes full responsibility for the actions of the persons on this list and for completing and submitting all required reports.

VANA VAL 8 1 2 2
XXX-XX-6166
XXX-XX-6448
SJ9252 <mark>95</mark>
XXX-XX-5886
SA294701
XXX-XX-8924

Appendix H

References

- Chlorophyll a Sampling and Field Filtering Standard Operating Procedure (SOP-EA001-00)
- EPA New England- Region 1. (2005). Standard operating procedure for calibration and field measurement procedures for the YSI Model 6-Series Sondes and Data Logger (Including: temperature, pH, specific conductance, turbidity, dissolved oxygen, chlorophyll, rhodamine WT, ORP, and barometric pressure)(7th Revision). North Chelmsford, MA: The Office of Environmental Measurement and Evaluation, Ecosystem Assessment- Ecology Monitoring Team.
- Ohio Environmental Protection Agency. (1987a). Biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters (Updated January 1988; September 1989; November 2006; August 2008; January 2013). Columbus, OH: Division of Water Quality Monitoring and Assessment.
- Ohio Environmental Protection Agency. (1987b). Biological criteria for the protection of aquatic life: Volume III. Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities (Updated September 1989; March 2001; November 2006; and August 2008; February 2013). Columbus, OH: Division of Water Quality Monitoring and Assessment.
- Ohio Environmental Protection Agency. (2006a). *Methods for assessing habitat in flowing waters: using the Qualitative Habitat Evaluation Index (QHEI)*. (Ohio EPA Technical Bulletin EAS/2006-06-1). Columbus, OH: Division of Surface Water; Division of Ecological Assessment Section.
- Ohio Environmental Protection Agency. (2012). *Field Evaluation Manual for Ohio's Primary Headwater Habitat Stream*. Columbus, OH: Division of Surface Water; Division of Ecological Assessment Section.
- Ohio Environmental Protection Agency. (2013). Surface Water Field Sampling Manual for water chemistry, bacteria, and flows. Columbus, OH: Division of Surface Water