Level 3 Project Study Plan

2015 Mill Creek Environmental Monitoring

(1) Objectives

In 2015, the Northeast Ohio Regional Sewer District (NEORSD) plans to conduct stream monitoring activities at four sites on Mill Creek, an urbanized tributary to the Cuyahoga River. Mill Creek has a natural waterfall, Mill Creek Falls, which is a fish migration barrier at river mile (RM) 2.80. NEORSD will assess habitat and water chemistry conditions and evaluate the fish and benthic macroinvertebrate communities at each site. The purpose of the 2015 monitoring is to continue the biology of the creek downstream of the falls and to satisfy permit requirements. The four sites, which are along Mill Creek's main branch, are located at RMs 8.30, 2.75, 0.70, and 0.12. These sites were first surveyed in 1995 as part of the Mill Creek Watershed Management Project, and were all surveyed again in 2011 through 2014.

A comparison of the fish and macroinvertebrate communities and the corresponding habitat and water chemistry data will be used to determine the the biological communities and the overall health of the creek segments.

Additionally, sampling at RM 0.12 and 8.30 are required by Ohio Environmental Protection Agency (EPA) National Pollutant Discharge Elimination System (NPDES) Permit No. 3PA00002*GD.

The 2015 survey will continue to support several NEORSD capital improvement projects designed to provide wet weather flow relief, stormwater storage capacity, and reduction/elimination of CSOs for several communities in the Mill Creek watershed. The Miles Avenue Relief Sewer (MARS) was completed in June 2010, the Lee Road Relief Sewer (LRRS) was completed in June 2012, and the Phase Three of the Mill Creek Tunnel Project (MCT-3C) was completed in late 2012. The stream monitoring surveys, which are considered post-construction monitoring for LRRS, MARS and MCT-3C, will enable future evaluations of the effectiveness of the capital improvement projects in restoring the chemical and biological health of Mill Creek.

Stream monitoring activities will be conducted at each site by NEORSD Level 3 Qualified Data Collectors certified by Ohio EPA in Fish Community Biology, Benthic Macroinvertebrate Biology, Chemical Water Quality, and Stream Habitat Assessment. Fish and macroinvertebrate community health will be evaluated through the use of appropriate Ohio EPA methods, which may include: Index of Biotic Integrity (IBI); and the Invertebrate Community Index (ICI). An examination of the specific characteristics of the biological communities will be used in conjunction with water quality data, the NEORSD Macroinvertebrate Field Sheet, and Qualitative Habitat Evaluation Index (QHEI) results in order to identify

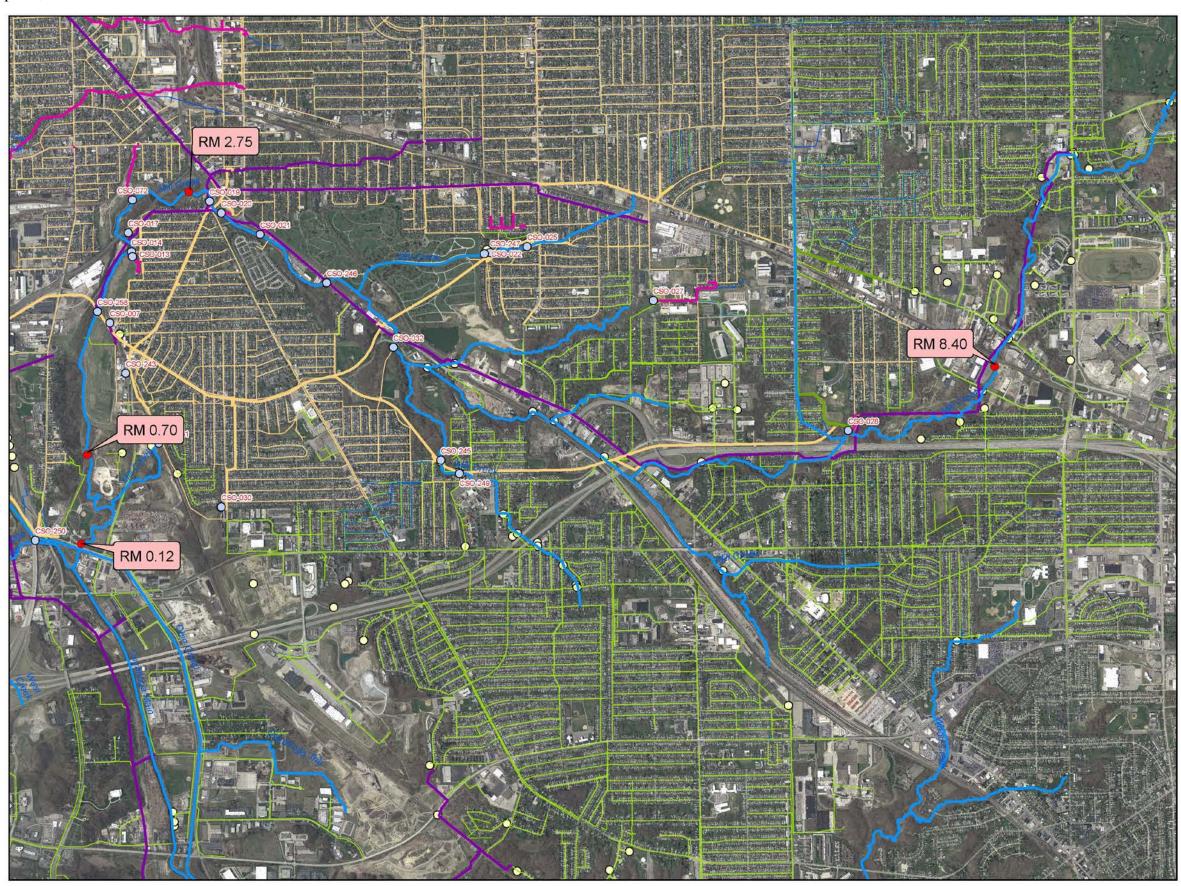
impacts to the communities. Results will be compared to historic data to show temporal as well as spatial trends. Water chemistry data will also be compared to the Ohio Water Quality Standards to determine attainment of applicable uses (Ohio EPA, 2013a)¹.

(2) Nonpoint/Point Sources

Point Sources	Nonpoint Sources
Combined Sewer Overflows	Urban Runoff
Sanitary Sewer Overflows	Spills
Storm Sewer Outfalls	Sedimentation
Home septic systems	

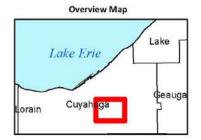
A map has been provided to show point sources that may be influencing the water quality at each sample location. These sources, along with the nonpoint sources listed in the table above, may be impacting the health of the fish and benthic macroinvertebrate communities in Mill Creek. Other factors that may influence ecological conditions during the study include periods of drought or precipitation.

(6) Sampling Locations


The following water chemistry, habitat, electrofishing, and macroinvertebrate sample locations on Mill Creek, listed from upstream to downstream, will be surveyed during the 2015 field season. Benthic macroinvertebrate and water chemistry collection sites are located within each electrofishing zone, indicated by RM. GPS coordinates are recorded at the downstream end of each electrofishing zone.

2

¹ See appendix H for a list of all references.


2015 Mill Creek Environmental Monitoring April 6, 2015

Water Body	Latitude	Longitude	River Mile	Location Information	USGS HUC 8 Number - Name	Purpose
Mill Creek	41.4305	-81.5442	8.30	Upstream of South Miles Road, first site upstream of NEORSD CSOs	04110002 Cuyahoga	Evaluate watershed health, support of Capital Improvement projects. Site required by Ohio EPA NPDES Permit
Mill Creek	41.4451	-81.6271	2.75	Downstream of the Mill Creek Falls	04110002 Cuyahoga	Evaluate watershed health, support of Capital Improvement projects.
Mill Creek	41.4240	-81.6376	0.70	Upstream of the Warner Road Tributary, adjacent to 5000 Warner Road	04110002 Cuyahoga	Evaluate watershed health, support of Capital Improvement projects.
Mill Creek	41.4178	-81.6387	0.12	Upstream of Canal Road	04110002 Cuyahoga	Evaluate watershed health, support of Capital Improvement projects. Site required by Ohio EPA NPDES Permit

Mill Creek Study Plan

Legend

- Monitoring Site
- Regional Drainage
- CSO Outfall
- District Facility
- Outfalls
- NEORSD CSO Combined Sewer
- NEORSD CSO Responsibility Sewer
- NEORSD Intercommunity Relief Sewer
- NEORSD INTERCEPTOR
- Local Combined Sewer
- Local Culverted Stream
- Local Sanitary Sewer
- Local Storm Sewer

This information is for display purposes only. The Northeast Ohio Regional Sewer District (NEORSD) makes no warranties, expressed or implied, with respect to the accuracy of and the use of this map for any specific purpose. This map was created to serve as base information for use in Geographic Information Systems (GIS) for a variety of planning and analysis purposes. The NEORSD expressly disclaims any liability that may result from the use of this map. For more information, please contact: NEORSD GIS Services, 3900 Euclid Avenue, Cleveland, Ohio 44115 ----(216) 881-6600 --- GIS@neorsd.org

2015 Mill Creek Environmental Monitoring April 6, 2015

2015 Project Study Plans

(3) Parameters Covered

Fish specimens will be identified to species level, weighed, counted and examined for the presence of external anomalies including DELTs (deformities, eroded fins, lesions and tumors). An Ohio EPA Fish Data Sheet (Appendix A) will be completed during each assessment. Quantitative fish sampling is expected to be conducted at all locations.

Macroinvertebrate community assemblages will be collected from each location. Third Rock Consultants, LLC will identify and enumerate the specimens collected from each site. All specimens will be identified to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b) ¹. The NEORSD Macroinvertebrate Field Sheet (Appendix A) will be completed at each site during sampler retrieval or when qualitative sampling is conducted.

Stream habitat will be measured by scoring components of the QHEI at all locations, including the substrate, instream cover, channel morphology, riparian zone, bank erosion, pool/glide and riffle/run quality and gradient. The HHEI will be conducted at those sites with drainage areas less than one square mile listed under PSPs with general watershed monitoring. The Lacustuary QHEI (L-QHEI) will be performed at sites that are affected by the water level of Lake Erie. Examples of the Ohio EPA field sheets for the QHEI, L-QHEI and the HHEI can be found in Appendix A.

Water chemistry samples will be collected at each electrofishing/macroinvertebrate sampling site included in the study. Water chemistry samples will be analyzed by NEORSD's Analytical Services Division. Appendix B lists the parameters to be tested along with the detection limits and practical quantitation limits. Field measurements for dissolved oxygen, pH, temperature, conductivity and turbidity will also be performed. A Surface Water Condition Sampling Field Data Form will be completed at each site during each sampling event (Appendix A).

Benthic and water column chlorophyll *a* samples may be collected from stream locations. Chemical and physical water quality parameters to be measured in conjunction with the chlorophyll *a* samples include total phosphorus, dissolved reactive phosphorus, nitrite, nitrate+nitrite, ammonia, alkalinity, turbidity and suspended solids. In the Cuyahoga River, YSI 6600EDS data sondes may be

¹See Appendix H for a list of all references.

installed at RMs 16.20, 10.75, 10.10, and 7.00 around the time that this sampling is conducted to more frequently monitor dissolved oxygen, temperature, conductivity, specific conductivity and pH.

(4) Field Collection and Data Assessment Techniques

Field collections for fish will be conducted at all stream locations. Sampling will be conducted using longline, backpack, or boat electrofishing techniques and will consist of shocking all habitat types within a sampling zone. Headwater and wading sites, which are 0.15 and 0.20 kilometers in length, respectively, will be surveyed by moving from downstream to upstream. Boat sites, which are 0.50 kilometers in length, will be surveyed by moving from upstream to downstream. The stunned fish will be collected and placed into a live well for later identification. The longline, backpack, and boat electrofishing zones will be assessed one to three times during the field season (June 15 - October 15).

Fish will be identified to the species level, weighed, counted, and examined for the presence of external anomalies including DELTs. Fish easily identified (commonly collected from year to year) will be returned to the site from which they are collected. Fish species difficult to identify will be brought back to the laboratory for verification by NEORSD Level 3 Fish Qualified Data Collectors (QDC). If necessary, vouchers will be sent to The Ohio State University Museum of Biological Diversity for verification by the Curator and/or Associate Curator of Fish. Voucher specimens will be collected as described in section (14). Endangered species and those too large for preservation will not be collected as voucher specimens, but will instead be photographed. Photographed vouchers will include features that permit definitive identification of the particular species.

Fish will be preserved in 10 percent formalin in the field, soaked in tap water for 24 to 48 hours after 5 to 7 days, then transferred to solutions of 30 and 50 percent ethanol for 5 to 7 days each and, finally, to 70 percent ethanol for long-term storage. Specimens larger than six inches will be slit along the right side and then soaked in formalin for approximately 10 to 14 days before being transferred to water and solutions of 30, 50 and 70 percent ethanol. Label information will include location (description and coordinates), date, time, collectors' names and sample identification code for each specimen collected.

Macroinvertebrate sampling will be conducted using quantitative and qualitative sampling techniques. Quantitative sampling will be done using a modified Hester-Dendy multi-plate artificial substrate sampler (HD) that is colonized for a sixweek period. Multiple HD samplers may be installed at one or all sampling locations in case samplers are lost due to vandalism, burial, etc. and for the purposes of providing a replicate sample. Qualitative sampling will be conducted using a D-frame dip net when HD samplers are retrieved. The NEORSD

Macroinvertebrate Field Sheet will be completed during each HD retrieval. Ronald Maichle of NEORSD, a Level 3 QDC for Benthic Macroinvertebrate Biology, may identify specimens in the replicate sample to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b).

Macroinvertebrate voucher specimens for both quantitative and qualitative sampling will be collected as described in section (14). Macroinvertebrate community assemblages collected will be shipped to Third Rock Consultants, LLC (Lexington, KY) for identification and enumeration. Third Rock Consultants, LLC will identify specimens to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b).

A detailed description of the sampling and analysis methods utilized in the fish community and macroinvertebrate surveys, including calculations of the IBI, MIwb, and ICI, can be found in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volumes II* (1987a) and *III* (1987b). Methods for assessing fish and macroinvertebrate communities in lacustuary zones can be found in Ohio EPA's draft *Biological Criteria for the Protection of Aquatic Life, Volume IV* (1997).

The QHEI, as described in Ohio EPA's Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI) (2006) will be used to assess aquatic habitat conditions at each sample location. The L-QHEI will be used where appropriate and will follow Ohio EPA's draft Methods of Assessing Habitat in Lake Erie Shoreline Waters Using the Qualitative Habitat Evaluation Index (QHEI) Approach (Version 2.1) (2010).

The HHEI as described in Ohio EPA's *Field Evaluation Manual for Ohio's Primary Headwater Habitat Streams* (2012a) will be used, when necessary, to conduct use attainability analyses and to classify the actual and expected biological conditions in primary headwater habitat streams.

Water chemistry sampling may occur across a variety of flow conditions. Techniques used for water chemistry sampling and chemical analyses will follow the *Surface Water Field Sampling Manual* (Ohio EPA, 2013). Chemical water quality samples from each site will be collected with at least one 4-liter disposable polyethylene cubitainers with disposable polypropylene lids and two 473-mL plastic bottles. Water samples collected for analysis of dissolved reactive phosphorus will be filtered using a 0.45-µm PVDF syringe filter and will be collected in a 125-mL plastic bottle. Bacteriological samples will be collected in a sterile plastic bottle preserved with sodium thiosulfate. All water quality samples

will be collected as grab samples. Field blanks and duplicate samples will each comprise not less than 5% of the total samples collected for this study plan, for a total frequency of quality control samples of not less than 10% of the total samples collected. With the exception of bacteriological duplicate samples, the acceptable percent RPD will be based on the ratio of the sample concentration and detection limit (Ohio EPA, 2013): Acceptable % RPD = $[(0.9465X^{-0.344})*100] + 5$, where X = sample/detection limit ratio. For bacteriological duplicates, duplicate samples more than 5x apart from one another (%RPD > 133.3%) will be rejected in accordance with the Ohio EPA approved method for data validation of bacteriological samples outlined in Section F of the Ohio 2012 Integrated Water Quality Monitoring and Assessment Report (Ohio EPA, 2012b). Those RPDs that were higher than acceptable may indicate potential problems with sample collection and, as a result, the data will not be used for comparison to the water quality standards. Acid preservation of the samples, as specified in the NEORSD laboratory's standard operating procedure for each parameter, will occur in the field. Appendix B lists the analytical method, method detection limit and practical quantitation limit for each parameter analyzed. Field analyses include the use of either a YSI-556 MPS Multi-Parameter Water Quality Meter, YSI EXO1 sonde, or YSI 600XL sonde to measure dissolved oxygen (DO), water temperature, conductivity and pH; and when necessary, a Hanna HI 98129 meter to measure pH and a Hach HQ30d meter with LDO101 probe to measure DO. Field turbidity will be measured using either a Hach 2100P Portable Turbidimeter or Hach 2100Q Turbidimeter. Specifications for these meters have been included in Appendix C.

Benthic and water column chlorophyll a samples may be collected if time and resources allow. Sampling methods will follow those detailed in the NEORSD Chlorophyll a Sampling and Field Filtering Standard Operating Procedure (SOP-EA001-00). A Chlorophyll a Sampling Field Sheet will be completed for each site (Appendix D). Water chemistry grab samples will be collected at the same time using the methods discussed previously and will be analyzed for nutrients, turbidity, alkalinity and suspended solids. Additionally in the Cuyahoga River, approximately 24-hours prior to each chlorophyll a sampling event, YSI 6600 EDS data sondes may be deployed at RMs 16.20, 10.75, 10.10 and 7.00. If installed, each data sonde will record, at fifteen-minute intervals, dissolved oxygen concentration, pH, temperature, and conductivity from the time the data sonde is deployed until the time it is retrieved. These data sondes will be placed in the stream by inserting each one into a 4.5-inch PVC pipe with holes drilled into the sides of the lower third of the pipe to allow water to pass through it. The data sondes will remain in the river for approximately 24-hours or longer following collection of the chlorophyll a samples.

Where possible, data assessment will include an analysis of temporal and spatial trends in the collected data. Species assemblages and individual metrics will be

analyzed. Graphs that show current and historic QHEI, L-QHEI, IBI, LIBI, MIwb, ICI, and LICI scores and how these scores compare to attainment status of biocriteria will be prepared. Water chemistry data collected will be compared to Ohio water quality standards to determine whether any excursions from the applicable water quality criteria have occurred. It will also be used to determine any relationships among individual parameters and chlorophyll *a* concentrations. Comparisons between water quality and biological community health will only be made if at least three water quality samples have been collected from that site.

(5) Stream Flow Measurement

Stream flow will be recorded for all locations during each electrofishing pass utilizing data from the United States Geological Survey (USGS) gauge station nearest the stream location, if applicable.

Stream flow will be measured with a Marsh-McBirney FloMate Model 2000 Portable Flow Meter, a HACH FH950 Flow Meter or an Aquaflow Probe Model 6900, which measure flow in feet per second, when HD samplers are installed and retrieved. The specifications for the flow meters can be found in Appendix C.

(7) Schedule

One to three electrofishing surveys will be conducted at each site between June 15 and October 15, 2015. Surveys will be conducted at least three weeks apart. Specific dates have not been scheduled. River flow and weather conditions will be assessed weekly to determine when each electrofishing pass will be conducted.

Artificial substrate samplers will be installed at stream locations between June 15 and August 19, 2015, and retrieved six weeks later. Qualitative macroinvertebrate sampling will be conducted one time at all sites. Specific dates have not been scheduled. River flow and weather conditions will be assessed weekly to determine when the HD sampler installations and retrievals and qualitative sampling will be conducted.

QHEI, and if necessary, HHEI and L-QHEI habitat evaluations will be conducted one time between June 15 and October 15, 2015. QHEI evaluations will be conducted around the same time as one of the electrofishing surveys.

Water chemistry samples will be collected a minimum of three times from stream locations between June 15 and October 15, 2015.

Benthic and water column chlorophyll *a* samples may be collected at least one time from stream locations between June 15 and October 15, 2015. These samples will be collected under low-flow conditions.

(8) QA/QC

Quality assurance and quality control of sampling and analysis methods for habitat, fish, and macroinvertebrate evaluations will follow Ohio EPA's Biological Criteria for the Protection of Aquatic Life, Volumes II (1987a) and III (1987b), Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI) (2006), Field Evaluation Manual for Ohio's Primary Headwater Habitat Streams (2012a), draft Biological Criteria for the Protection of Aquatic Life: Volume IV: Fish and Macroinvertebrate Indicies for Ohio's Lake Erie Nearshore Waters, Harbors, and Lacustuaries (1997) and draft Methods of Assessing Habitat in Lake Erie Shoreline Waters Using the Qualitative Habitat Evaluation Index (QHEI) Approach (Version 2.1) (2010)

Electrofishing equipment will be used according to the guidelines listed in the operation and maintenance manual provided by Smith-Root, Inc. Malfunctioning equipment will not be used to collect data. Proper steps will be taken to correct any problems as soon as possible, whether by repairing in the field, at the NEORSD Environmental & Maintenance Services Center, or by contacting the supplier or an appropriate service company.

Fish species difficult to identify will be brought back to the laboratory for verification by Level 3 Fish QDC's, and if necessary, sent to The Ohio State University Museum of Biological Diversity for verification by the Curator and/or Associate Curator of Fish. Voucher specimens will be collected as described in section (14). Endangered species and those too large for preservation will not be collected as voucher specimens, but will instead be photographed. Photographed vouchers will include features that permit definitive identification of the particular species.

All macroinvertebrate community assemblages from stream locations, except for the replicate sample, will be collected and shipped to Third Rock Consultants, LLC for identification and enumeration. All specimens will be identified to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b). All macroinvertebrate specimens will be returned to NEORSD. At least two voucher specimens of each species, when available, will be separated into individual vials and kept as described in section (14). The remaining specimens for each site will be returned in a single container labeled with the site number and collection method and date. All specimens and accompanying chain-of-custody documentation will be retained by NEORSD and stored at the Environmental & Maintenance Services Center for a period not less than ten years.

Water samples obtained for chemical analyses will be collected, preserved (see Section 4), labeled and then placed on ice inside the field truck. The field truck will remain locked at all times when not occupied/visible. Sampling activities, including sample time and condition of surface water sampled, will be entered in a field log book and on the Surface Water Condition Sampling Field Data Form. The samples will then be delivered immediately to the NEORSD Analytical Services cooler, after which the door to the cooler will be locked, and the samples will be transferred to the custody of Analytical Services. The NEORSD Analytical Services Quality Manual and associated Standard Operating Procedures are on file with Ohio EPA. The Quality Assurance Officer at Analytical Services will send updates, revisions and any information on document control to Ohio EPA as needed.

For benthic and water column chlorophyll *a* sampling, three filtrations will be performed for each sample. A field filtration blank will be submitted for every 20 samples.

Calibration of YSI 6600EDS data sondes will be done according to the YSI Environmental Operations Manual. The conductivity will be calibrated first using a 1.413 mS/cm standard. Second, the pH will be calibrated using two different buffers (7 and 10 s.u.). The DO will be calibrated last with an acceptable error of 0.2 mg/L.

Once the sondes are removed from the river, the accuracy of the data that has been collected will be checked by comparing readings taken by the sondes to known standards. If the measurements taken at this time meet quality control goals, all of the data collected since the last calibration will be considered accurate. The acceptable differences for pH and conductivity will be ± 0.3 with pH 7 buffer and $\pm 10\%$ of the conductivity standard, respectively (EPA New England- Region 1, 2005). The acceptable difference for DO will be ± 0.2 mg/L. If the measurements do not meet quality control goals, best professional judgment will be used to decide if any of the data collected during that period may still be accurate. For example, the data collected from the four locations may be plotted on the same graph, and if it appears that the data points are following similar trends, they may be considered accurate. If any data that do not meet quality control goals are used, a rationale for their inclusion will be provided when the data are submitted.

(9) Work Products

Within one year of completion of the project, fish data (species, numbers, weights, pollution tolerances, the incidence of DELT anomalies, IBI or LIBI, MIwb scores), macroinvertebrate data (types and numbers of macroinvertebrates collected and ICI or LICI scores), habitat data (QHEI or L-QHEI raw data and scores) and water chemistry results will be submitted to the Ohio EPA or an Ohio

EPA approved data warehouse. Additionally, reports summarizing, interpreting, graphically presenting and discussing the IBI (LIBI, where applicable), MIwb, ICI (LICI, where applicable) and QHEI (L-QHEI, where applicable) scores, chlorophyll *a* results, and any excursions from water quality standards may be prepared for internal use.

(10) Qualified Data Collectors

The following Level 3 Qualified Data Collectors (QDC) will be involved with this study:

Name	Address	Email Address	Phone Number	QDC Specialty(s)
John W. Rhoades ¹	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	rhoadesj@neorsd.org	216-641-6000	QDC - 00008 CWQA/FCB/SHA/ BMB
Cathy Zamborsky	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	zamborskyc@neorsd.org	216-641-6000	QDC - 00009 CWQA/SHA
Seth Hothem	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	hothems@neorsd.org	216-641-6000	QDC - 00010 CWQA/FCB/SHA/ BMB
Tom Zablotny	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	zablotnyt@neorsd.org	216-641-6000	QDC - 00018 CWQA/FCB/SHA
Ron Maichle	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	maichler@neorsd.org	216-641-6000	QDC - 00145 CWQA/SHA/BMB
Francisco Rivera	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	riveraf@neorsd.org	216-641-6000	QDC - 00262 CWQA/SHA
Jillian Knittle	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	knittlej@neorsd.org	216-641-6000	QDC – 00512 CWQA/SHA/BMB
Jonathan Brauer ²	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	brauerj@neorsd.org	216-641-6000	QDC - 00663 SHA
Bert Remley ³	2526 Regency Road, Suite 180 Lexington, Kentucky 40503	bremley@thirdrockconsultants.com	859-977-2000	QDC – 00837 BMB

¹ NEORSD Lead Project Manager

The following is a list of persons not qualified as Level 3 QDCs who may be involved in the project. Prior to the start of sampling, the project managers will explain to each individual the proper methods for sampling. Sampling will only be completed under the direct observation of a QDC. The lead project manager will be responsible for reviewing all reports and data analysis prepared by qualified personnel prior to completion.

Name	Address	Email Address	Phone Number
Kelsey Amidon	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	amidonk@neorsd.org	216-641-6000
Nick Barille	4747 East 49 th Street	barillen@neorsd.org	216-641-6000

² See acknowledgement letter for conducting QHEIs (Appendix F)

³Benthic Macroinvertebrate Identification

Name	Address	Email Address	Phone Number
	Cuyahoga Hts., Ohio 44125		
Mark Colvin	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	colvinm@neorsd.org	216-641-6000
Tim Dobriansky	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	dobrianskyt@neorsd.org	216-641-6000
Donna Friedman	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	friedmand@neorsd.org	216-641-6000
Rae Grant	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	grantr@neorsd.org	216-641-6000
Mark Matteson	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	mattesonm@neorsd.org	216-641-6000
Mario Meany	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	meanym@neorsd.org	216-641-6000
Carrie Millward	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	millwardc@neorsd.org	216-641-6000
Denise Phillips	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	phillipsd@neorsd.org	216-641-6000
Brandy Reischman	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	reischmanb@neorsd.org	216-641-6000
Frank Schuschu	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	schuschuf@neorsd.org	216-641-6000
Eric Soehnlen	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	soehnlene@neorsd.org	216-641-6000
William Stanford	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	standfordw@neorsd.org	216-641-6000
Wolfram von Kiparski	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	vonkiparskiw@neorsd.org	216-641-6000
NEORSD Summer Co-op #1	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	To Be Determined	216-641-6000
NEORSD Summer Co-op #2	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	To Be Determined	216-641-6000
NEORSD Summer Co-op #3	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	To Be Determined	216-641-6000
NEORSD Summer Co-op #4	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	To Be Determined	216-641-6000

(11) Contract laboratory contact information

All bacteriological and/or chemical sample analysis will be completed by NEORSD's Analytical Services Division. Evidence of NEORSD's Analytical Services current accreditation and method dates can be found in Appendix E. The contact information for NEORSD's Analytical Service Division is:

NEORSD Analytical Services Mr. Mark Citriglia 4747 E. 49th Street Cuyahoga Heights, Ohio 44056 citrigliam@neorsd.org 216-641-6000 Any fish that is not positively identified in the field, or at NEORSD, will be sent to The Ohio State University Museum of Biological Diversity for verification by the Curator and/or Associate Curator of Fish. Fish will be identified to the species level.

Dr. Ted Cavender, Curator of Fish / Mr. Marc Kibbey, Associate Curator of Fish 1315 Kinnear Road, Columbus, Ohio 43212 cavender.1@osu.edu / kibbey.3@osu.edu 614-292-7873

Identification of macroinvertebrates for stream locations will be completed by Third Rock Consultants LLC (Lexington, Kentucky) (Appendix F). Benthic macroinvertebrates will be identified to the lowest practical level as recommended by Ohio EPA (1987b). Third Rock Consultants LLC contact information:

Ms. Marcia Wooton
Third Rock Consultants LLC
2526 Regency Road, Suite 180
Lexington, Kentucky 40503
mwooton@thirdrockconsultants.com
859-977-2000

- (12) Copy of ODNR collector's permit See Appendix G.
- (13) Digital Catalog Statement

A digital photo catalog of all sampling locations will be maintained for 10 years and will include photos of the specific sampling location(s), the riparian zone adjacent to the sampling location(s) and the general land use in the immediate vicinity of the sampling location(s).

Print/Signature: John W. Rhoades

(14) Voucher Specimen Statement

NEORSD will maintain a benthic macroinvertebrate and fish voucher collection which includes two specimens, or appropriate photo vouchers, of each species or taxa collected during the course of biological sampling from any stream within the NEORSD's service area. When benthic macroinvertebrates from multiple surface waters are collected within the same year and identified by the same QDC, one voucher collection will be created to represent the specimens collected from those

streams. When fish specimens from multiple surface waters are collected within the same year, one voucher collection will be created to represent the specimens collected from those streams. A separate collection for each sampling event will not be maintained.

NEORSD will provide specimens or photo vouchers to the Director upon request. This collection will be stored at the NEORSD laboratory in the Environmental and Maintenance Services Center.

Date: 04/13)

Print/Signature: John W. Rhoades

(15) Sample Location Statement

I attest that I will make available any and all sampling location information, including but not limited to; the name of the water body sampled, sampling location latitude and longitude, sampling location river mile where possible, general location information, the U.S. geological survey HUC 8 number and name, and the purpose for data collection at each sampling location.

Print/Signature: John W. Rhoades

(16) Additional L3 Data Collector Statement

The Lead Project Manager for all stream locations is approved for all project data types.

Print/Signature: John W. Rhoades

(17) Trespassing Statement

I have not been convicted or pleaded guilty to a Violation of section 2911.21 of the Revised Code (criminal trespass) or a substantially similar municipal ordinance within the previous five years

Print/Signature:	John W. Rhoades	Date: 04/13/15
Print/Signature:	Cathy Zamborsky / Thy Josnoly	Date: 4/10/15
Print/Signature:	Seth Hothem / Ben Muse	Date: 4/10/15
Print/Signature:	Tom Zablotny / Jon Zary	Date: 4 10 15
Print/Signature:	Ron Maichle Jane Market	Date: 04-10-15
Print/Signature:	Jillian Knittle / All Allth	Date: 4/3/15
Print/Signature:	Francisco Rivera / Francisco Rivera / Francisco	Date: 4/13/15
Print/Signature:	Jonathan Brauer	Date: 4/10/15

Appendix A

Ch's EBA	FISH DATA	Sheet ID For Office		New Station (requires lat/long & cour	Mix Mix	Zone		Pac	ge.	of	
O	SHEET										
					·						
			County								
Crew		Netter	Oth	ers		Sam	pler	Тур	e		_
Distance	Flow	Temp. C _	Secchi	Source	Project_						
	Number Tot	al Total					DE	LT A	NON	IALII	ES
	Weighed Cour			Weights (Co	ounts		Multi				is, Tum fish
						D	Е	L	Т	М	*
V 10x						\neg	+			-	
IOX						D	E	L	Т	M	ak
						\top					
V 10x									_		
V 10x						D	Е	L	Т	M	*
						1	1		+	-	
						_					
V 10x							<u> </u>				
						D	E	L	Т	М	*
V 10x						\dashv	-			1	
						D	Е	L	Т	M	ak:
						\top	1	1		1	
						-					
V 10x						D	E	L	T	M	*
						+	+				
V 10x							1				
						D	Е	L	Т	М	T
V 10x						-	+	-	-	-	
						D	Е	L	Т	М	*
W do						- _	4		-		
V 10x						D	E	L	T	M	*
						-	+	+		-	
						\dashv					
V 10x								1	1	1	

^{*} A-anchor worm; B-black spot; C-leeches; F-fungus; N-blind; P-parasites; S-emaciated, W-swirled scales Y-popcye; Z-other

<u> </u>	Code Wei	nber Total Tota ghed Counted Weig	Weights Counts 1	D	Е	L	Т	M	*
							-		+
/	10x								
				D	Е	L	Т	М	*
7	10				_	1		-	1
<u></u>	10x			D	E	L	T	M	*
					+			-	+
7	10x								\perp
				D	Е	L	T	M	*
7	10x					+		-	1
	101			D	Е	L	Т	M	*
					+	+	-	+	+
7	10x								1
				D	Е	L	T	М	*
7	10x					-		-	+
ļ	101			D	Е	L	T	M	*
						-	+-	+	t
7	10x			D	E	L	T	M	*
					-	-	1	101	+
7	10x				-	+	-	-	+
				D	Е	L	T	M	*
									Ī
7					\perp	1	ļ		\downarrow
	10x			D	Е	L	T	M	14
					-	-	-	-	+
7	10x								
				D	Е	L	T	M	*
									T
7	10x		-		1	+		-	1
	TUX			D	Е	L	Т	M	*
					+			+	+
				E-18-2					
7	10x		1		+	+	+	+	+

NEORSD Macroinvertebrate Field Sheet River Mile: Year: Project: Location: Drainage Area (mi²): _____ Latitude (°N)/Longitude (°W): ____ **Hester-Dendy Deployment Information** _____ Crew (QDC Circled): Install Date: Depth (cm): Current at HD (fps): Pictures Obtained: Yes Crew (QDC Circled): Reinstall Date: Depth (cm): Current (fps):___ _____ Reason: ____ Crew (QDC Circled): Reinstall Date: Depth (cm): Reason: Current (fps): Sampling/Retrieval Information Sampling Method: Dipnet Surber Core Other: Hester-Dendy Sample ID: HD: _____ Qualitative: ____ Other: ____ Crew (QDC Circled): Sampling Date: HD Condition-Current (fps): _____ Depth (cm): _____ Water Temp: ____ Number of HD Blocks Obtained: Remarks: Disturbed: Yes No Comments: Debris: Yes No Comments: Silt/Solids: None Slight Moderate Heavy Dipnet-Time Sampled (min): X Number of Crew: = Total (min): ____ Habitats Sampled: Riffle Pool Run Margin Backwater **River Sampling Conditions** Flow Condition: Flood Above Normal Normal Interstitial Intermittent Dry Current Velocity: Fast Moderate Slow Non-detect Channel Morphology: Natural Channelized Channelized (Recovered) Impounded Bank Erosion: Extensive Moderate Slight None Riffle Development: Extensive Moderate Sparse Absent Riffle Quality: Good Fair Poor Embedded: Yes No Water Clarity: Clear Murky Turbid Other: Water Color: None Green Brown Grey Other: 75 % 50 % Canopy over HD: Open 25 % Closed **Comment Section:**

QDC #: Date:

OEPA Comment Field Codes:_____

Samples Analyzed By:

				Phys	sical Characteris	stics –			
Substrate C	Characteri	stics		•	Predominant L		Use (Left,	Right or Bot	h)
	_	o	_		Forest	Url	ban		Open Pasture
	Pool nits	Riffle ^{Jnits}	Run	ts	Shrub	Re	sidential/F	ark	Closed Pasture
	Po Units	Rif Units	_	Units	Old Field	Mi	ning/Cons	struction	
Bedrock					Rowcrop	We	etland		
Boulder					Industrial	Otl	her		
Rubble									
Coarse Gravel					Predominant R	Rinari	ian Veget:	ation	
Fine Gravel					Left	Rig	_	Туре	
Sand					2010		>	Large Tr	rees
Silt						_		Small Tr	
Clay/Hardpan						_		Shrubs	CC 3
Detritus						_		Grass/W	ands
Peat								None	ceus
						_		None	
Muck					N. #				
Other					Margin Habita		0 1	г.	D
Macrophytes					Margin Quality		Good	Fair	Poor
Algae					Undercut B	lanks		ot Mats	Tree Roots
Artifacts					Grass			ter Willow	Woody Debris
Compaction (F,M,S)					Shallows			y/Hardpan	Macrophytes
Depth (Avg)					Rip Rap		Bul	khead	
Width (Avg)					Other				
Riffle: Predominant Org Other Common of Density:	-	Modera	nte.	Low	gical Character		V≃ Very A Overall Amo /	unt (V=>I	int; C= Common; R= Rare 151; A= 150-101; C= 100-11; R= 10-1) 20a igochaeta, Hirudinea
Diversity:	-	Modera		Low			//	7	
Diversity.	High	Modera	ile	LUW			/	Isopoda, Amph	
Run:								Decapoda, Hyo Ephemeroptera	
Predominant Org	aniem:							Baetidae	•
Other Common						_	//	-	daa Lantahumbidaa Caasidaa
Density:	Organisiiis High	- Modera	ıte.	Low	,	_	' '	Other	dae, Leptohyphidae, Caenidae
Diversity:	High	Modera		Low			-	-	contors
Diversity.	riigii	Modela	ile	Low				Zygoptera, Ani	isoptera
Dool								Plecoptera	
Pool:	:						ļ,	Hemiptera	I
Predominant Org						_		Megaloptera, N	veuroptera
Other Common				Ψ.		_		Trichoptera	1.1.
Density:	High	Modera		Low				Hydropsy	
Diversity:	High	Modera	ate	Low	,		/		idae, Leptoceridae
								Other	
Margin:								Coleoptera	
Predominant Org	_							Elimidae	
Other Common	_	C						Other	
Density:	High	Modera		Low				Diptera	
Diversity:	High	Modera	ate	Low	•			Chironon	nidae
								Other	
Other Notable Collec	ctions:					_	/	Gastropoda, B	ivalvia
								Other	

Field Narrative Rating: E VG G MG F P VP

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

QHEI	Score:		
------	--------	--	--

Stream & Location:		RM:	Date:
	Scorers Full Name & Affiliation:	Northeast (
River Code:	STORET #:Lat./Long.:	/8	Office verified location
1] SUBSTRATE Check	ck ONLY Two substrate TYPE BOXES; nate % or note every type present Check OI	NE (<i>Or 2</i> &	average)
DEST TVDES	POOL RIFFLE OTHER TYPES POOL RIFFLE ORIGIN	,	QUALITY
☐ ☐ BLDR /SLABS [10]			HEAVY [-2]
☐☐ BOULDER [9]	DETRITUS [3] ITILLS [1] WETLANDS [0]	SILT	☐ MODERATE [-1] Substrate ☐ NORMAL [0]
GRAVEL [7]	THARDPAN [0]		□ FREE [1]
☐ ☐ SAND [6] ☐ ☐ BEDROCK [5]	ARTIFICIAL [0] SANDSTONE [0] (Score natural substrates; ignore RIP/RAP [0]	& DDEON	□ EXTENSIVE [-2] □ MODERATE [-1] Maximum
NUMBER OF BEST	TYPES: 4 or more [2] sludge from point-sources) LACUSTURINE [0]		DEXTENSIVE [-2] MODERATE [-1] NORMAL [0] NONE [1]
Comments	☐ 3 or less [0] ☐ SHALE [-1] ☐ COAL FINES [-2]		□ NONE [1]
•	R Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more commor quality; 2-Moderate amounts, but not of highest quality or in small amounts or	of hiahest	
quality; 3-Highest quality i	in moderate or greater amounts (e.g., very large boulders in deep or fast water, e, well developed rootwad in deep / fast water, or deep, well-defined, functional p	large	Check ONE (Or 2 & average) REXTENSIVE >75% [11]
UNDERCUT BANK		_	MODERATE 25-75% [7]
OVERHANGING VI SHALLOWS (IN SL		The second secon] SPARSE 5-<25% [3] □ NEARLY ABSENT <5% [1]
ROOTMATS [1]	LOGS OR WOODY DEB	תוס[ו] [Cover
Comments			Maximum
			20
•	HOLOGY Check ONE in each category (Or 2 & average) VELOPMENT CHANNELIZATION STABILITY		
	EXCELLENT [7] NONE [6] HIGH [3]		
The state of the s	GOOD [5] RECOVERED [4] MODERATE [2]		
The second secon	FAIR [3]		Channel
Comments			Maximum 20
AL DANK EDOCION	AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or	2 51-	P average)
River right looking downstre			& average)
L R EROSION	☐ WIDE > 50m [4] ☐ FOREST, SWAMP [3]	$-$ L $_{\rm K}$	CONSERVATION TILLAGE [1]
☐ ☐ NONE / LITTLE [3] ☐ ☐ MODERATE [2]	☐ MODERATE 10-50m [3] ☐ SHRUB OR OLD FIELD [2] ☐ NARROW 5-10m [2] ☐ RESIDENTIAL, PARK, NEW FIELD		JRBAN OR INDUSTRIAL [0]
HEAVY / SEVERE [1			MINING / CONSTRUCTION [0] predominant land use(s)
	□ □ NONE [0] □ □ OPEN PASTURE, ROWCROP [0]		0m riparian. Riparian
Comments			Maximum 10
5] POOL / GLIDE AN	ID RIFFLE / RUN QUALITY		
MAXIMUM DEPTH			Recreation Potential
Check ONE (<i>ONLY!</i>) ☐ > 1m [6]	Check ONE (Or 2 & average) Check ALL that apply POOL WIDTH > RIFFLE WIDTH [2] TORRENTIAL [-1] SLOW [1]		Primary Contact
□ 0.7-<1m [4]	□ POOL WIDTH = RIFFLE WIDTH [1] □ VERY FAST [1] □ INTERSTIT		Secondary Contact (circle one and comment on back)
☐ 0.4~<0.7m [2] ☐ 0.2~<0.4m [1]	☐ POOL WIDTH < RIFFLE WIDTH [0] ☐ FAST [1] ☐ INTERMITT ☐ MODERATE [1] ☐ EDDIES [1]		Pool /
☐ < 0.2m [0]	Indicate for reach - pools and riff		Current
Comments			Maximum 12
	ctional riffles; Best areas must be large enough to support a	popula	tion NO RIFFLE [metric=0]
of riffle-obligate RIFFLE DEPTH	•	: E / DIII	N EMBEDDEDNESS
☐ BEST AREAS > 10cm [2			ONE [2]
BEST AREAS 5-10cm [1	1] MAXIMUM < 50cm [1] MOD. STABLE (e.g., Large Gravel) [1]		OW [1] ODERATE (0) Riffle /
BEST AREAS < 5cm [metric=0	UNSTABLE (e.g., Fine Gravel, Sand) [0]	⊔M ∏E	ODERATE [0] Riffle / Run XTENSIVE [-1] Maximum
Comments			Maximum 8
6] GRADIENT (ft/mi) UERY LOW - LOW [2-4] %POOL:	%GLIDE	Gradient
DRAINAGE AREA	MODERATE [6-10]	%RIFFLE	Maximum
(EDA 4520	mi ²) HIGH - VERY HIGH [10-6] %RUN:		06/16/06
EPA 4520			00/10/00

AJ SAMPLED REACH Check ALL that apply	Comment RE: Reach consistency/ Is	reach typical of steam?, <i>Recreation</i>	/ Observed - Inferred, <i>Other</i> /	Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concems, Access directions, etc.	ess directions, etc.
۵					
<u> </u>					
O L. LINE					
DISTANCE DRY					
□ 0.5 Km CLARITY	BJAESTHETICS	DJ MAINTENANCE	Circle some & COMMENT	EJ ISSUES	F] MEASUREMENTS
	□ NUISANCE ALGAE	PUBLIC / PRIVATE / BOTH / NA		WWTP / CSO / NPDES / INDUSTRY	x width
0.12 Km	INVASIVE MACROPHYTES	ACTIVE / HISTORIC / BOTH / NA		HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL	x depth
☐ OTHER ☐ 40-70 cm ☐	DISCOLORATION	SPRAY / SNAG / REMOVED		BMPs-CONSTRUCTION-SEDIMENT	max. depth ▼ hankfull width
SECCHI DEPTH	FOAM / SCUM	MODIFIED / DIPPED OUT / NA		LOGGING / IRRIGATION / COOLING	bankfull X depth
GANODY	OIL SHEEN	LEVEED / ONE SIDED RELOCATED / CUTOFFS		FALSE BANK / MANURE / LAGOON	W/D ratio
		MOVING-BEDLOAD-STABLE		WASH H ₂ 0 / TILE / H ₂ 0 TABLE	bankfull max. depth
55%-<85% 2nd cm		ARMOURED / SLUMPS		ACID / MINE / QUARRY / FLOW	floodprone x* width
30%-<55%	CSOS/SSOS/OUTFALLS	IMPOLINDED / DESICCATED		PARK / GOLE / I AWN / HOME	Gildelich: Fatto
☐ 10%-<30%	:47/ON AREA DEPTH POOL: □>100ft²□>3ft	FLOOD CONTROL / DRAINAGE		ATMOSPHERE / DATA PAUCITY	Legacy Iree:
Stream Drawing:					

Comment RE: Reach consistency/1s reach typical of steam?, Recreation/ Observed - Inferred, Other/Sampling observations, Concerns, Access directions, etc.

ChieFPA Primary Headwater Habitat Evaluation Form

1	

SITE NAME/LOCATION	
SITE NUMBER RIVER BASIN DRAINAGE AREA (mi²)	
LENGTH OF STREAM REACH (ft) LAT LONG RIVER CODE RIVER MILE	
DATE SCORER COMMENTS	
NOTE: Complete All Items On This Form - Refer to "Field Evaluation Manual for Ohio's PHWH Streams" for Ins	structions
STREAM CHANNEL NONE / NATURAL CHANNEL RECOVERED RECOVERING RECENT OR NO REMODIFICATIONS:	ECOVERY
SUBSTRATE (Estimate percent of every type of substrate present. Check ONLY two predominant substrate TYPE boxes (Max of 32). Add total number of significant substrate types found (Max of 8). Final metric score is sum of boxes A & B.	т нн
TYPE PERCENT TYPE PERCENT	Meti Poir
BLDR SLABS [16 pts]	Polit
BEDROCK [16 pt] 0% FINE DETRITUS [3 pts] 0%	Substi
COBBLE (65-256 mm) [12 pts] 0% CLAY or HARDPAN [0 pt] 0%	Max =
GRAVEL (2-64 mm) [9 pts] 0% MUCK [0 pts] 0%	1 1
SAND (<2 mm) [6 pts] 0% ARTIFICIAL [3 pts] 0%	
Total of Percentages of 0.00% (A) Substante Percentage 0% (B)	A + B
Bidr Slabs, Boulder, Cobble, Bedrock SCORE OF TWO MOST PREDOMINATE SUBSTRATE TYPES: 0 TOTAL NUMBER OF SUBSTRATE TYPES: 1	
2. Maximum Pool Depth (Measure the maximum pool depth within the 61 meter (200 ft) evaluation reach at the time of	Pool D
evaluation. Avoid plunge pools from road culverts or storm water pipes) (Check ONLY one box):	Max =
> 30 centimeters [20 pts] > 5 cm - 10 cm [15 pts] > 22.5 - 30 cm [30 pts] < 5 cm [5 pts]	1
> 22.5 - 30 cm [30 pts]	0
COMMENTS MAXIMUM POOL DEPTH (centimeters):	
C. PANK FILL MIDTH M. C.	J
3. BANK FULL WIDTH (Measured as the average of 3-4 measurements) (Check ONLY one box): > 4.0 meters (> 13') [30 pts] > 1.0 m - 1.5 m (> 3' 3" - 4' 8") [15 pts]	Banki Widt
> 3.0 m - 4.0 m (> 9' 7" - 13') [25 pts] ≤ 1.0 m (<=3' 3") [5 pts]	Max=
> 1.5 m - 3.0 m (> 9' 7" - 4' 8") [20 pts]	
COMMENTSAVERAGE BANKFULL WIDTH (meters):	0
This information <u>must</u> also be completed RIPARIAN ZONE AND FLOODPLAIN QUALITY ☆NOTE: River Left (L) and Right (R) as looking downstream☆ RIPARIAN WIDTH FLOODPLAIN QUALITY	
L R (Per Bank) L R (Most Predominant per Bank) L R	
Wide >10m	
Moderate 5-10m Immature Forest, Shrub or Old Urban or Industrial	
Narrow <5m Residential, Park, New Field Open Pasture, Row (Crop
None Fenced Pasture Mining or Construction	on
COMMENTS	
FLOW REGIME (At Time of Evaluation) (Check ONLY one box): Stream Flowing Subsurface flow with isolated pools (Interstitial) COMMENTS FLOW REGIME (At Time of Evaluation) (Check ONLY one box): Moist Channel, isolated pools, no flow (Intermittee Dry channel, no water (Ephemeral)	ent)
SINUOSITY (Number of bends per 61 m (200 ft) of channel) (Check ONLY one box);	
None 1.0 2.0 3.0 3.0 5 1.5 2.5 3	
STREAM GRADIENT ESTIMATE Flat (0,5 ft/100 ft) Moderate (2 ft/100 ft) Moderate to Severe Severe (10 ft/100 ft/1	ft/100 ft)

ADDITIONAL STREAM INCORMATION (This Information Must Also be Comple	tool)
QHEI PERFORMED? - Yes No QHEI Score (If Ye	
— —	es, Attach Completed QHEI Form)
DOWNSTREAM DESIGNATED USE(S) WWH Name:	Distance from Evaluated Stream
CWH Name:	Distance from Evaluated Stream
EWH Name:	Distance from Evaluated Stream
MAPPING: ATTACH COPIES OF MAPS, INCLUDING THE ENTIRE WATE	RSHED AREA. CLEARLY MARK THE SITE LOCATION
USGS Quadrangle Name: NRCS Soil	Map Page: NRCS Soil Map Stream Order
County: Wyandot Township / City:_	
MISCELLANEOUS	
Base Flow Conditions? (Y/N):Y Date of last precipitation:	Quantity: 0.00
Photograph Information:	
Elevated Turbidity? (Y/N): Y Canopy (% open): 0%	
Were samples collected for water chemistry? (Y/N): Y (Note lab sample no.	or id. and attach results) Lab Number:
Field Measures: Temp (°C) Dissolved Oxygen (mg/l) pH (S	.U.) Conductivity (μmhos/cm)
Is the sampling reach representative of the stream (Y/N) If not, please expla	ain:
Additional comments/description of pollution impacts: BIOTIC EVALUATION Y	
ID number. Include appropriate field data sheets from Fish Observed? (Y/N) Y Voucher? (Y/N) Y Salamanders Observed? (Y/N)	
DRAWING AND NARRATIVE DESCRIPTION OF STRE	AM REACH (This must be completed):
Include important landmarks and other features of interest for site evalua	tion and a narrative description of the stream's location
FLOW -	
PLUW	

PHWH Form Page - 2

Reset Form

Lake / Lacus	tuary (Lenti	c) QHEI F	ield She	et Ohio	Environmental Protection Agency	QHEI Score	:
RIVERCODE	RIVERM	ILE	WATER	RBODY	DISTA	NCE ASSESSED (I	m):
DATE	_LOCATIONLAT						
SCORER	LAT	LON	IG	COMME	NT		
1] SUBSTRATE (Ch						LAKE: LACUSTU	ARY:
TYPE	SHORE BOTTOM		HORE BOTTOM	SUBSTRATE OR Check ONE (or 2 &		Check CNE (or 2 & AVERAGE)	
DID-BLDRSLABS[7]		LHARDPAN[4]		U-LIMESTONE		J-SILTHEAVY[2]	S.bshale
		I-BEDROCK [3] I-DETRITUS [3]				☑-SILT MODERATE [-1]	
GRAVEL[7]		J-SILT[2]		-WETLANDS [· 1	J-SILTNORWAL [0]	
DD-SAND[6]		J-SILT [2]	_	II-LACUSTUAR	NE[1]	Jaliffee [1]	May 20
NOTE: Ignore sludge it score on natural subst	hat originates from poi			☐-SANDSTONE ☐-RIP/RAP[1] ☐-HARDPAN[0]	SLT	J ^L CLAY [-2] J-INDUSTRIAL [-1] J ^L ORGANIC [1]	
NUMBER OF SUBSTR	PATE TYPES -5or	More [2]		□-SHALE[1]]-NONE[1]	
THOMBER OF GODOTI	4or	Less [0]		U-COAL/ORE[-	a E	_ 110.1-[1]	.1
COMMENTS:					<u></u>		
2] COVER TYPES		(PE: (Check A# Th				eck ONLY One or check2	_
D'-OFF-SHORE SAND		PWATER>1M[1]		* * *	D-EXTENSIVE		Cover
D-OVERHANGING VE				GED AQUATIC VEG	* '		
CI-SHALLOWS (ON BE				WOODY DEBRIS	1] D-SPARSE 5-2		
☐-ROOTMATS[1]	□ SAN	DBEACH[1]	GRAVEL I	BEACH[1]	D-NEARLY AB	SENT < 5%[1]	Max 20
COMMENTS:							
3] SHORELINE MOR	·	-		•	MODIFICATION	NS OF SAMPLED SHOP	ELNE
SHORE SINUOSITY	DEVELOPMENT	MODIFICATI		STABILITY	U-CEMENTE	D[-1] D -STEEL	BULKHEADS [2]
□-нен[2]	D-EXCETTENT [8]	1 1	1 1	□HIGH[3]	□ RIPRAPPE	D[1] DHSLANDS	3[1]
O-MODERATE[4]	[]-GOOD [5]	□-RECOVE		□-MODERATE [2]	- RAILROAD	TIES[1] DI-DIKES[1]
□-row[3]	□-FAIR[3]	□-RECOVE		□-row[1]	DI-DREDGED	[-1] DEBANKSI	HAPING[-1]
□-NONE[1]	□-POOR[1]	RECOVE			□-TWO SIDE	CHANNEL D-WOOD F	PLINGS[1]
			Cr [ij		MODIFICATI	ONS[-1]	
	LOPEMORPHOLOGIE		SE DEPTH (of		□\SHPCHAN	NEL[-2]	
	SLOPE >45 deg. []->400 - 500 cm (4			ShareLine
☐-SLOPE < 25 deg.[1]	SLOPE 90 deg. [U]			II->500-900 cm [2	ı i		
CII-SLOPE > 25 deg.[3]		□ -≥100)-200 cm [2] []¹->900 cm [1]			
		□->200	0-400 cm [3]] ;		پ
COMMENTS					ı		Max 20
4] RIPARIAN ZONE	AND BANK EROSI	ON (Check ONE bo	x PER bank or	2 and AVERAGE)		ht Looking East or South (ht Looking Toward Lake it	
RIPARIAN WIDTH		SHORE LINE Q	UALITY (PAST	100 FOOT RIPARI	M)	BANK EROSION	
L R (PerBank)		redominantPerBank)		L R		L R (PerBank)	Ripatian
□□-WDE>50m[4]	H	EST, WETLAND, LA		DD-CONSERVA		O O-NONEUTTLE	• 111 1
MODERATE 10-		UBOROLD FIELD		□□-URBAN OR	• • •	MODERATE (-1	
-NARROW 5-10 r		YARD, ORCHARD	[2]		JRE, ROWCROP [U]	10104HEAVY/SEVER	
U-VERY NARROW		EDPASTURE[1]		-MNINGCO			Max 10
□ □-NONE [0]		DENTIAL PARK, N	EWFIELD [1]	DID-DIKEDWE	ILAND[0]	J	
COMMENTS							
5] AQUATIC VEGET (Score all for observed about	indance: ABUNDANT = [3]; COMMON = [5], F	EW= [1]; UNC	OMMON = {0}}		_NO AQUATIC VEGET	ATION = 0
-Pond Lilles (NY		Sedge (CYPE			VALLISNERIA)	1001d Disc (717**)	IA) \/andsta
-Pond Weed (PC (Score all for observed about		Bulrush (SCIF 2]; COMMON = [-1];		-Waterweed (ELUDEA)	-Wild Rice (ZIZAN	IA) Vegetation
-Purple Looses	rifeReed Gr	ass -Euras	slan Milfoli	-Cattalis	Algae (mats)	-Algae (plankton	எ 📖
COMMENTS.							Max 30

is the Sampling Reach Representa	tive of Area Habits	it? (Y/N) if Not, i	Explain:			
Depth measures: Zebra Mussel Cov	rerage 🔟>6	7% □ 60->25%	□L25->10% □L<10-	->1% □□-10%		
First Sampling Pass: Second Sampling Pass:	Gear	Distance	Water Clarity	Wave Height		
Third Sampling Pass: WATERBODY MEASUREMENTS	AVERAGE	MAIDTH	AVERACE OERTH	Maxim	Subjective Rating (1 – 10) Photos:	
WATERBOUT MEASUREMENTS	AVERAGE		_ AVERAGE DEPTH: _	North Arrow:	um Depin:)

1. Fish: Voucher Spe Sample Method No Evaluation	ecimens Retained:		Time Spent (minutes):
Species	Number Caug	ht Notes	
Blank	0		
	0		
	0		
	0		
Sample Method No Eva	Specimens Retain aluation		Time Spent (minutes):am Length Assessed (meters)
Species (Genus)	# Larvae	# Juveniles/Adult	s Total Number
Mountain Dusky (Desmognathus ochrophaeus)	0	0	0
Northern Dusky (Desmognathus fuscus)	0	0	0
Two-lined (Eurycea bislineata)	0	0	0
Long-tailed (Eurycea	0	0	0
longicauda)			
longicauda) Cave (Eurycea	0	0	0
Cave (Eurycea lucifuga) Red (Pseudotriton		0	
longicauda)	0		0
longicauda) Cave (Eurycea lucifuga) Red (Pseudotriton ruber) Mud (Pseudotriton montanus) Spring (Gyrinophilus	0	0	0
longicauda) Cave (Eurycea lucifuga) Red (Pseudotriton ruber) Mud (Pseudotriton montanus) Spring (Gyrinophilus porphyriticus) Mole spp. (Ambystoma	0 0	0	0 0
longicauda) Cave (Eurycea lucifuga) Red (Pseudotriton ruber) Mud (Pseudotriton montanus) Spring (Gyrinophilus porphyriticus) Mole spp. (Ambystoma spp.) Four-toed (Hemidactylium	0 0 0	0	0 0 0
longicauda) Cave (Eurycea lucifuga) Red (Pseudotriton ruber) Mud (Pseudotriton	0 0 0	0 0	0 0 0 0

3. Macroinvertebrate Scoring Sheet:

THE HEADWATER MACROINVERTEBRATE FIELD EVALUATION INDEX (HMFEI) SCORING SHEET

Indicate Abundance of Each Taxa Above each White Box.

Record HMFEI Scoring Value Points Within each Box.

For EPT taxa, also indicate the different taxa present.

		bunda	ınt ((>50); A = Abund	ant (10	-50); C	C = Common (3-9)	$\mathbf{R} = \text{Rare} \mathbf{I}$	(< 3)
Sessile Animals (Por	ifera,		þ	Crayfish (Decapoda)			Fishfly Larvae		
Cnidaria, Bryozoa)			٦l				(Corydalidae)		
(HMFEI pts = 1)	NA	0	J k	HMFEI pts = 2)	NA	0	(HMFEI pts = 3)	NA	0
Aquatic Worms (Tur	bellaria,	Hirudin	_				Water Penny Beetles		
Oligochaeta)			ı k	Anisoptera)	[]		(Psephenidae)		
(HMFEI pts = 1)	NA	0	1 1	HMFEI pts = 2)	NA	0	(HMFEI pts = 3)	NA	0
Sow Bugs			\rightarrow	Riffle Beetles (Dryopidae			Cranefly Larvae		
(Isopoda)			- 1	Elmidae, Ptilodactylidae)			(Tipulidae)		
(HMFEI pts = 1)	NA	0	1 1	HMFEI pts = 2)	NA	0	(HMFEI pts = 3)	NA	0
Scuds (Amphipoda)			_	Larvae of other Flies (enter	r name in	comments)		TAXA*	
(HMFEI pts = 1)			- 1	Diptera):				_	
,	NA	0	1 1	HMFEI pts = 1)	NA	0	Total No. EPT Taxa =	0	
Water Mites (Hydra	carina)		_	Midges (Chironomidae)	L		Mayfly Nymphs (Ephe	meroptera)	
(HMFEI pts = 1)	,		- 1	HMFEI pts = 1)			Taxa Present:	0	
(2. pts - 1)			٦ĺ	τιντι Δι ρω τή			1	U	
	NA	0	П		NA	0	HMFEI pts =	NA	0
Damselfly Nymphs			-	Snails	1		No. Taxa (x) 3]		
(Zygoptera)				(Gastropoda)					
1	NA	0	1 1	_	NA	0	1		
(HMFEI pts = 1) Alderfly Larvae			\rightarrow	(HMFEI pts = 1)	1		Stonefly Nymphs (Plea	antava)	
1							I .		
(Sialidae)			ľ	(Bivalvia)			Taxa Present:	0	
(HMFEI pts = 1)	NA	0	7 K	(HMFEI pts = 1)	NA	0	[HMFEI pts =	NA	0
	14.						No. Taxa (x) 3]		<u> </u>
Other Beetles				Other Taxa :					
(Coleoptera)	NA		٦l				1		
(HMFEI pts = 1)	IVA	0	Ц	laconomica de la constitución de					
Other Taxa:				Other Taxa:			Caddisfly Larvae (Tric	hoptera)	
	-		٦l				Taxa Present:	0	
			_				[HMFEI pts =		
							No. Taxa (x) 3]	NA	0
Other Taxa:				Other Taxa					
								80 - 4	
							fication based upon Famil	y or Genus level	of taxonom
Voucher Sample ID_					Time S	Spent (mini	utes):		
Notes on Macroinve	rtebrates	: (Predo	mina	nt Organisms; Other Com	mon Orga	nisms; Dive	ersity Estimate)		
- + +									
	Final	НМ	FEI	Calculated Scor	e (Sur	n of All	l White Box Scor	res) =	۸ I
	_ 11101				`			,	0
				inal HMFEI Score is > 19,				_	
			IF F	inal HMFEI Score is 7 to 1	19, Then C	LASS II	PHWH STREAM		
			IF F	inal HMFEI Score is < 7,	Then CLA	SS I PHV	WH STREAM		
					FORM	ъ.			

PHWH FORM - Page 4

4/1/03

Save as pdf

Reset Form

NEORSD Surface Water Condition Sampling Field Data Form

Stream:	Date:		Co	ollectors:		
Gage Station and II	D:		_Daily Mean	Discharge:		ft³/sec
	en during or following a w					
Water Quality Meter	s Used:					
Time (hrs):	River	r Mile (Site)	•			
	Partly Cloudy Over Heavy Snow Melt	_	•		nvy Rain	
Flow: Dry In	termittent Minimal	Baselin	e/Normal	Elevated	Flood	
HD Status:	OK Other:					
Color: Clear	Muddy			Oth		
Odor: Normal	Petroleum Ana	aerobic	Sewage	Chemical	Other:	
Surface Coating:	None Foam	Oily	Scum	Other:		
Field Parameters:	Conductivity (µmhos/c	m):		Sp. Cond. (µn	nhos/cm):	
	Dissolved Oxygen (mg/	/L):		D.O.	(%):	
				рН (s.u.):	
	Temperature (°C):		1 \		
Turbidity 1 (NTU	Temperature ('): Turbid	lity 2 (NTU)	:	_ Averag	ge (NTU):	
General Comments:): Turbid	lity 2 (NTU)	:	Averag	ge (NTU):	
General Comments:): Turbid	lity 2 (NTU)	:	Averag	ge (NTU):	
General Comments:	Partly Cloudy Over	r Mile (Site)	: : ght Rain/Shov	Averag	e (NTU):	
General Comments: Time (hrs): Weather: Clear Steady Rai	Partly Cloudy Over	r Mile (Site)	: : ght Rain/Show	Averag	e (NTU):	
General Comments: Time (hrs): Weather: Clear Steady Rai	Partly Cloudy Over Heavy Snow Melt	r Mile (Site) cast Lig Oth	: ght Rain/Show her: e/Normal	Averag	e (NTU):	
General Comments: Time (hrs): Weather: Clear Steady Rai Flow: Dry Ir	River Partly Cloudy Over Heavy Snow Melt termittent Minimal	r Mile (Site) reast Lig Otl	: ght Rain/Shov her: e/Normal	Averag	avy Rain	
General Comments: Time (hrs): Weather: Clear Steady Rai Flow: Dry Ir HD Status:	River Partly Cloudy Over Heavy Snow Melt termittent Minimal OK Other: Muddy	r Mile (Site) reast Lig Otl	: ght Rain/Shov her: e/Normal	Vers Hea	avy Rain Flood	
General Comments: Time (hrs): Weather: Clear Steady Rai Flow: Dry Ir HD Status: Color: Clear	River Partly Cloudy Over Heavy Snow Melt termittent Minimal OK Other: Muddy	r Mile (Site) reast Lig Oth Baselin	:; ght Rain/Shovher: _e/Normal Milky	Average vers Hea	avy Rain Flood ner: Other:	
General Comments: Weather: Clear Steady Rai Flow: Dry Ir HD Status: Color: Clear Odor: Normal	River Partly Cloudy Over Heavy Snow Melt termittent Minimal OK Other: Muddy Petroleum Ana	r Mile (Site) reast Lig Oth Baselin Tea aerobic Oily	ght Rain/Showher: e/Normal Milky Sewage Scum	vers Heated Elevated Other:	avy Rain Flood ner: Other:	
General Comments: Time (hrs): Weather: Clear Steady Rai Flow: Dry Ir HD Status: Color: Clear Odor: Normal Surface Coating:	River Partly Cloudy Over Heavy Snow Melt termittent Minimal OK Other: Muddy Petroleum And None Foam	r Mile (Site) r cast Lig Otl Baselin Tea aerobic Oily	c:	Vers Heat Elevated Oth Chemical Other: Sp. Cond. (μπ	avy Rain Flood ee: Other:	
General Comments: Time (hrs): Weather: Clear Steady Rai Flow: Dry Ir HD Status: Color: Clear Odor: Normal Surface Coating:	River Partly Cloudy Over Heavy Snow Melt termittent Minimal OK Other: Muddy Petroleum And None Foam Conductivity (µmhos/c	r Mile (Site) r Mile (Site) r Cast Lig Otl Baselin Tea aerobic Oily cm):	c:cht Rain/Shov her:e/Normal Milky Sewage Scum	Average Wers Heat Elevated Oth Chemical Other: Sp. Cond. (µn	avy Rain Flood her: Other:	
General Comments: Weather: Clear Steady Rai Flow: Dry Ir HD Status: Color: Clear Odor: Normal Surface Coating: Field Parameters:	River Partly Cloudy Over Heavy Snow Melt termittent Minimal OK Other: Muddy Petroleum And None Foam Conductivity (µmhos/c	r Mile (Site) reast Lig Oth Baselin Tea aerobic Oily em):	ght Rain/Showher: e/Normal Milky Sewage Scum	Average Wers Heat Elevated Oth Chemical Other: Sp. Cond. (µm D.O. pH (avy Rain Flood ner: Other: nhos/cm): (%):	

Appendix B

Parameter	Additional Name	Test	2014 Minimum Detection Limit	2014
Alkalinity	Alkalinity	EPA 310.2	1.6 mg/L	Practical Quantitation Limit 5.0 mg/L
Mercury	Hg	EPA 245.1	0.006 μg/L	
Ammonia ¹	NH ₃	EPA 350.1		0.050 μg/L
Nitrite	-		0.002 mg/L	0.020 mg/L
	NO2	SM 4500 NO ₂ B ²	0.001 mg/L	0.020 mg/L
Nitrite + Nitrate	NO ₂ + NO ₃	EPA 353.2	0.003 mg/L	0.020 mg/L
Total Kjeldahl Nitrogen	TKN	EPA 351.2	0.081 mg/L	0.500 mg/L
Dissolved Reactive Phosphorus	DRPhos	EPA 365.1	0.003 mg/L	0.010 mg/L
Total Phosphorus	Total-P	EPA 365.1	0.003 mg/L	0.010 mg/L
Chloride	Chloride by IC	EPA 300.0	1.00 mg/L	5.00 mg/L
Sulfate	Sulfate by IC	EPA 300.0	0.500 mg/L	5.00 mg/L
Silver	Ag	EPA 200.8	0.009 μg/L	0.500 μg/L
Aluminum	Al	EPA 200.8	0.504 μg/L	5.000 μg/L
Arsenic	As	EPA 200.8	0.320 μg/L	1.000 μg/L
Barium	Ba	EPA 200.8	0.033 μg/L	0.500 μg/L
Beryllium	Be	EPA 200.8	0.540 μg/L	0.500 μg/L
Calcium	Ca	EPA 200.8	16.90 μg/L	125.0 μg/L
Cadmium	Cd	EPA 200.8	0.034 μg/L	0.500 μg/L
Cobalt	Со	EPA 200.8	0.056 μg/L	0.500 μg/L
Chromium	Cr	EPA 200.8	0.049 μg/L	0.500 μg/L
Copper	Cu	EPA 200.8	0.073 μg/L	1.000 μg/L
Iron	Fe	EPA 200.8	0.495 μg/L	5.000 μg/L
Potassium	К	EPA 200.8	3.695 µg/L	125.0 μg/L
Magnesium	Mg	EPA 200.8	2.077 μg/L	125.0 μg/L
Manganese	Mn	EPA 200.8	0.057 μg/L	1.000 μg/L
Molybdenum	Мо	EPA 200.8	0.017 μg/L	0.500 μg/L
Sodium	Na	EPA 200.8	13.910 μg/L	125.0 μg/L
Nickel	Ni	EPA 200.8	0.066 μg/L	2.000 µg/L
Lead	Pb	EPA 200.8	0.058 μg/L	0.500 μg/L
Antimony	5b	EPA 200.8	0.018 μg/L	0.500 μg/L
Selenium	Se	EPA 200.8	0.383 μg/L	2.500 μg/L
Tin	5n	EPA 200.8	0.018 μg/L	
Strontium	Sr	EPA 200.8	0.049 μg/L	0.500 μg/L
Titanium	Ti			0.500 μg/L
Thallium		EPA 200.8	0.071 μg/L	1.000 μg/L
	TI	EPA 200.8	0.007 μg/L	0.500 μg/L
Vanadium	V	EPA 200.8	0.238 μg/L	5.000 μg/L
Zinc	Zn	EPA 200.8	0.241 μg/L	5.000 μg/L
Total Metals	Total Metals (calc.)	EPA 200.8	the state of the s	g/L)+(Ni μg/L)+(Zn μg/L)
Hardness	Hardness (calc.)	5M 2340 ²		mg/L)+(4.118*Mg mg/L)
Escherichia coli	E. coli	EPA 1603 Colilert QT (SM 9223 B 20th	1 colony	1 MPN
		Ed)		
Chlorophyll a	Chlorophyll a	EPA 445.0	0.03 μg/L	0.15 μg/L
Chemical Oxygen Demand	COD	EPA 410.4	0.49 mg/L	10 mg/L
Biological Oxygen Demand	BOD	5M 5210 ²	2 mg/L	
Total Solids	TS	5M 2540 B ²	1.0 mg/L	5.0 mg/L
Total Suspended Solids	TSS	SM 2540 D ²	0.5 mg/L	1.0 mg/L
Total Dissolved Solids	TDS	5M 2540 C ²	1.0 mg/L	5.0 mg/L
Turbidity **		EPA 180.1	0.1 NTU	0.2 NTU
Field Parameter		Test		ported in)
pH		EPA 150.1 ²		.u.
Conductivity		5M 2510A ²	·	/cm
Specific Conductivity		5M 2510A 2510B 2		/cm
Dissolved Oxygen	DO	SM 4500-0 G ²		g/L
Temperature	Temp	EPA 1701.1 2		'C

Listed MDL/PQL is for undistilled samples. Any samples that require distillation will have a MDL = 0.020 mg/L, PQL = 0.100 mg/L

¹ Standard Methods for the Examination of Water and Wastewater, Method approved by Standard Methods Committee, 1997. Editorial revisions, 2011.

 $[\]ensuremath{^{**}}$ Turbidity will either be completed in the field or at the laboratory.

Appendix C

Pure Data for a Healthy Planet.®

A rugged, cost-effective multiparameter handheld system designed for the field!

YSI 556 Multiparameter System

Versatile, multiparameter handheld instrument

Rugged and reliable, the YSI 556 MPS (Multiprobe System) combines the versatility of an easy-to-use, easy-to-read handheld unit with all the functionality of a multiparameter system.

- Simultaneously measures dissolved oxygen, pH, conductivity, temperature, and ORP
- Field-replaceable electrodes
- Compatible with EcoWatch' for Windows' data analysis software
- Stores over 49,000 data sets, time and date stamped, interval or manual logging
- Three-year warranty on the instrument; one-year on the probes
- GLP assisting, records calibration data in memory
- Available with 4, 10, and 20-m cable lengths
- IP-67, impact-resistant, waterproof case
- Easy-to-use, screw-on cap DO membranes
- RS-232 interface for PC connection

Options to Fit Your Applications!

- Battery Options The unit is powered by alkaline batteries or an optional rechargeable battery pack with quick-charge feature.
- Optional Barometer Internal barometer can be user-calibrated and displayed along with other data, used in dissolved oxygen calibrations, and logged to memory for tracking changes in barometric pressure. (Choose 556-02)
- Optional Flow Cell The 5083 flow cell can be used for ground water applications or anytime water is pumped for sampling.
- Carrying Case The instrument comes standard with YSI 5061, a soft-sided carrying case with enough space for the 556, a 20-meter cable, and calibrating supplies. An optional 5080 hard-sided carrying case is also available.
- Confidence Solution - Quality assurance ensured. Quickly check conductivity, pH, and ORP readings with one solution.

+1 937 767 7241 800 897 4151 (US) www.ysi.com

YSI Environmental +1 937 767 7241 Fax +1 937 767 9353 environmental@ysi.com

YSI Integrated Systems +1 508 748 0366 systems@ysi.com

SonTek/YS1 +1 858 546 8327 inquiry@sontek.com

YSI Gulf Coast +1 225 753 2650 environmental@ysi.com

AMJ Environmental +1 727 565 2201 ami@ysi.com

YSI Hydrodata (UK) +44 1462 673 581 europe@ysi.com

YSI Middle East (Bahrain) +973 1753 6222 halsalem@ysi.com

YSI (Hong Kong) Limited +852 2891 8154 hongkong@ysi.com

YSI (China) Limited +86 532 575 3636 beijing@ysi-china.com.

YSI Nanotech (Japan) +81 44 222 0009 nanotech@ysi.com

YSI India +91 989 122 0639 sham@ysi.com

YSI Australia +61 7 390 17223 acorbett@ysi.com

ISO 9001 ISO 14001

EcoWatch, Pure Data for a Healthy Planet, Confidence Solution and Who's Minding the Planet? are registered trademarks of YSI Incorporated. Windows is a registered trademark of Microsoft.

©2009 YSI Incorporated Printed in USA 0709 W11-06 CE

YSI incorporated Who's Minding the Flune!?

5563 MPS Sensor Specifications

Dissolved Oxygen (mg/L)

Total Dissolved Solids

Dissolved Oxygen Sensor Type Steady state polarographic 0 to 500% air saturation (% saturation) Range

Accuracy 0 to 200% air saturation, ± 2% of the reading or ±2% air saturation,

whichever is gre ater; 200 to 500% air saturation, \pm 6% of the reading

Resolution 0.1% air saturation

> Sensor Type Steady state polarographic 0 to 50 mg/L Range

Accuracy 0 to 20 mg/L, ± 2% of the reading or ±0.2 mg/L, whichever is greater;

20 to 50 mg/L, ± 6% of the reading

Resolution 0.01 mg/L

Temperature Sensor Type YSI Temperature Precision thermistor

-5 to 45°C Range Accuracy ± 0.15°C 0.1°C Resolution

Conductivity Sensor Type 4-electrode cell with autoranging

Range 0 to 200 mS/cm

± 0.5% of reading or ± 0.001 mS/cm; whichever is greater (4-meter cable) Accuracy

Calculated from conductivity (variable constant, default 0.65)

 \pm 1.0% of reading or \pm 0.001 mS/cm; whichever is greater (20-meter cable)

Resolution 0.001 mS/cm to 0.1 mS/cm (range-dependent)

Salinity Calculated from conductivity and temperature Sensor Type

Range

Accuracy ± 1.0% of reading or ±0.1 ppt, whichever is greater

Resolution 0.01 ppt

pH (optional) Sensor Type Glass combination electrode

Range 0 to 14 units Accuracy ±0.2 units 0.01 units Resolution

ORP (optional) Platinum button Sensor Type -999 to +999 mV Range

Sensor Type

Accuracy ±20 mV Resolution

(TDS) Range 0 to 100 g/L

Resolution 4 digits

Barometer (optional) Range 500 to 800 mm Hg Accuracy ± 3 mm Hg within ± 10°C temperature range from calibration point

Resolution 0.1 mm Hg

YSI 556 Instrument Specifications

11.9 cm width x 22.9 cm lenth (4.7 in. x 9 in.)

Weight with batteries 2.1 lbs. (916 grams)

4 alkaline C-cells; optional rechargeable pack Power 4-, 10-, and 20-m (13.1, 32.8, 65.6 ft.) lengths Cables Warranty 3-year instrument; 1-year probes and cables

Communication Port RS-232 Serial

Data Logger 49,000 data sets, date and time stamp, manual or logging, with user-selectable intervals

556 Ordering Information (Order all items separately)

556-01 Instrument (with 5061 large, soft-sided carrying case)

556-02 Instrument with barometer option (with 5061 carrying case)

5563-4 4-m cable and DO/temp/conductivity 5563-10 10-m cable and DO/temp/conductivity 5563-20

20-m cable and DO/temp/conductivity 5564

pH Probe for any 5563 cable pH/ORP Probe for any 5563 cable 5565

6118 Rechargeable battery pack kit (includes battery, adapter, charger)

614 Ultra clamp, C-clamp mount

616 Charger, cigarette lighter 4654 Tripod (small tripod for instrument)

5060 Small carrying case, soft-sided (fits instrument and 4-m cable)

5065 Form-fitted carrrier with shoulder strap

5080 Small carrying case, hard-sided (fits instrument, 4-m cable, flow

cell, batteries, membrane kit, calibration bottles)

5083 Flow cell

5085 Hands-free harness

5580 Confidence Solution* (insure probe accuracy with a simple field-

check for conductivity, pH, and ORP)

The 5080 carrying case with 556, 5563-4 cable, and 5083 flow cell.

The YSI 600XL and 600XLM

Pure Data for a Healthy Planet.®

Economical, multiparameter sampling or logging in a compact sonde

YSI 600XL and 600XLM Sondes

Measure multiple parameters simultaneously

The YSI 600XL and YSI 600XLM compact sondes measure eleven parameters simultaneously:

Temperature TDS
Conductivity pH
Specific Conductance ORP

Salinity Depth or Level
Resistivity Rapid Pulse DO (% and mg/L)

Connect with Data Collection Platforms

Either sonde can easily connect to the YSI 6200 DAS (Data Acquisition System), YSI EcoNet™ or your own data collection platform, via SDI-12 for remote and real-time data acquisition applications.

Economical Logging System

The YSI 600XLM is an economical logging system for long-term, in situ monitoring and profiling. It will log all parameters at programmable intervals and store 150,000 readings. At one-hour intervals, the instrument will log data for about 75 days utilizing its own power source. The 600XL can also be utilized in the same manner with user-supplied external power.

- Either sonde fits down 2-inch wells
- Horizontal measurements in very shallow waters
- Stirring-independent Rapid Pulse* dissolved oxygen sensor
- Field-replaceable sensors
- Easily connects to data collection platforms
- Available with detachable cables to measure depth up to 200 feet
- Compatible with YSI 650 Multiparameter Display System
- Use with the YSI 5083 flow cell for groundwater applications

Sensor performance verified*

The 6820 VZ and 6920 VZ sondes use sensor technology that was verified through the US EPA's Environmental Technology Verification Program (ETV). For information on which sensors were performance-verified, turn this sheet over and look for the ETV logo.

To order, or for more info, contact YSI Environmental.

+1 937 767 7241 800 897 4151 (US)

www.ysi.com

YSI Environmental +1 937 767 7241 Fax +1 937 767 9353 environmental@ysi.com

Endeco/YSI +1 508 748 0366 Fax +1 508 748 2543 systems@ysi.com

SonTek/YSI +1 858 546 8327 Fax +1 858 546 8150 inquiry@sontek.com

YSI Gulf Coast +1 225 753 2650 Fax +1 225 753 8669 environmental@ysi.com

YS1 Hydrodata (UK) +44 1462 673 581 Fax +44 1462 673 582 europeωysi.com

YSI Middle East (Bahrain) +973 1753 6222 Fax +973 1753 6333 halsalem@ysi.com

YSI (Hong Kong) Limited +852 2891 8154 Fax +852 2834 0034 hongkong⊕ysi.com

YSI (China) Limited +86 10 5203 9675 Fax +86 10 5203 9679 heijing@ysi-china.com

YSI Nanotech (Japan) +81 44 222 0009 Fax +81 44 221 1102 nanotech@ysi.com

ISO 9001 ISO 14001

Yollow Surrege, Ohio Fael-ty

ROX and Rapid Pulse are trademarks and FeeWatch, Pure Data for n Healthy Planet and Who's Minding the Planet? are registered trademarks at YM Incorporated.

© Printed in USA 0107 E55-01

The more and histed with the EVV lagariners submitted that the EVV pagariner and the \$14.00 CEV. Indomination with the 1970 Section determination with the 1970 Section determination of the 30 Section 1970 Section

Y \$1 incorporated
Who's Minding
the Planet?

	Range	Resolution	Accuracy
Dissolved Oxygen % Saturation EX 6562 Rapid Pulse" Sensor		0.1%	0 to 200%: ±2% of reading or 2% air saturation whichever is greater; 200 to 500%: ±6% of reading
Dissolved Oxygen mg/L 6562 Rapid Pulse" Sensor		0.Q1 mg/L	0 to 20 mg/L: ± 0.2 mg/L or 2% of reading, whichever is greater; 20 to 50 mg/L: ±6% of reading
Conductivity* 6560 Sensor* ET	0 to 100 mS/cm	0.001 to 0.1 mS/cm (range dependent)	±0.5% of reading + 0,001 m\$/cm
Salinity	0 to 70 ppt	0.01 ppt	±1% of reading or 0.1 ppt, whichever is greater
Temperature 6560 Sensor* EX	✓ -5 to +50°C	0.01°C	±0.15°C
pH 6561 Sensor* EI	0 to 14 units	0.01 unit	±0,2 unit
ORP	-999 to +999 mV	0.1 mV	±20 mV
Depth & Level Medi Shall Vented Le	ow 0 to 30 ft, 9.1 m	0.001 ft, 0.001 m 0.001 ft, 0.001 m 0.001 ft, 0,001 m	±0,4 ft, ±0.12 m ±0,06 ft, ±0.02 m ±0,01 ft, 0.003 m

Report outputs of specific conductance (conductivity corrected to 25° C), reastivity, and total dissolved solids are also provided. These values are automatically calculated from conductivity according to algorithms found in Standard Methods for the Exambiation of Water and Wastewater (ed 1989)

YSI 600XL & 600X	LM Sonde Specifications
Medium Medium	Fresh, sea or polluted water
emperature Operating Stora	ge -5 to +50°C
iommunications	RS-232, SDI-12
oftware	EcoWatch*
Pimensions Drame 400x1 abox44 teny Weig	ih 16 in, 40.6 cm 21.3 in, 54.1 cm
ower External (600XIM on	

HI 98129

Combo pH/EC/TDS/Temperature Tester with Low Range EC

Description

The HI 98129 Combo waterproof tester offer high accuracy pH, EC/TDS and temperature measurements in a single tester! No more switching between meters for your routine measurements. The waterproof Combo (it even floats) has a large easy-to-read, dual-level LCD and automatic shut-off. pH and EC/TDS readings are automatically compensated for the effects of temperature (ATC). This technologically advanced tester has a replaceable pH electrode cartridge with an extendable cloth junction as well as an EC/TDS graphite electrode that resists contamination by salts and other substances. This gives these meters a greatly extended life. Your tester no longer needs to be thrown away when the pH sensor is exhausted.

The EC/TDS conversion factor is user selectable as is the temperature compensation coefficient (B). Fast, efficient, accurate and portable, the Combo pH, EC/TDS and temperature tester brings you all the features you've asked for and morel

-			-0						
S	0	2	12	•	21	h	~	n	c
•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	こし		u	o.	ы	v	6 1	J

opcomodaona		
Range	pН	0.00 to 14.00 pH
Range	EC	0 to 3999 μS/cm
Range	TDS	0 to 2000 ppm
Range	Temperature	0.0 to 60.0°C / 32 to 140.0°F
Resolution	рН	0.01 pH
Resolution	EC	1 µS/cm
Resolution	TDS	1 ppm
Resolution	Temperature	0.1°C / 0.1°F
Accuracy	рН	±0.05 pH
Accuracy	EC/TDS	±2% F.S.
Accuracy	Temperature	±0.5°C / ±1°F
Temperature		pH: automatic; EC/TDS: automatic with ß adjustable
Compensation		from 0.0 to 2.4% / °C
Calibration	рН	automatic, 1 or 2 points with 2 sets of memorized buffers
		(pH 4.01 / 7.01 / 10.01 or 4.01 / 6.86 / 9.18)
Calibration	EC/TDS	automatic, 1 point
TDS Conversion Factor	or	adjustable from 0.45 to 1.00
pH Electrode		HI 73127 (replaceable; included)
Environment		0 to 50°C (32 to 122°F); RH max 100%
Battery Type / Life		4 x 1.5V / approx. 100 hours of continuous use;
		auto-off after 8 minutes of non-use
Dimensions		163 x 40 x 26 mm (6.4 x 1.6 x 1.0")
Weight		100 g (3.5 oz.)

HQ30d Portable pH, Conductivity, Dissolved Oxygen (DO), ORP, and ISE Multi-Parameter Meter

**** 5/5 U

Portable meter measures critical water quality parameters - without the need for multiple

instruments. Single input channel for featble measurement of pht. Conductivity. Deserved Oxygen (DO), BOD, ORP, Ammonia, Ammonium Fauntile Chloride Sodium, and sengerature - any IntelCALTM aman probe

Intuitive user interface for aimple operation and accurate results.

Guided calibration and disch standard institutes reduce calibration enters. Stubilization plants and visual measurement lock-ensure that you can that the accuracy of the results.

Trust your measurements - IntelRCAL. The ament probes stere all calibrations in the probe Calbration history allows quick and easy drawps aut of probes whost re-calcusing. The Hold Tennat system records period numbers purrent subsystem duts, user ID, sterple ID time and dute automatically in the data log for complete QLIP instancially.

Designed for demanding conditions
Rugged, waterproof (\$967) meter provides worry-tree reliable operation in lab or field anvisuaments.

Convenient kit Includes everything you need to start testing.

Meter lat includes 4 AA bateries quick-start guids, user manual and documentation CD.

AC and USB Operation

Automatic Buffer Recognision:

Cofer coded: 4 B 1 7 90 10 81 pH

RIPAC: 1879 4 008 7 090 10 912, 12 45

DN 1 00 4 45, 3232

User-defined custom buffer sets

Barbrietis: Pressure Measurement | For extornatic compensation of DO when using an LDO or LBOD probe

with stand Benchine

BOOS/CBOO resolution Available when used with Hach WIMS BDD Manager software

BODS/LS-UV reterrore.

Cable realisance correction Digital - not receded

Cabbration curves display Cabbration summary data logged and displayed

Calibration intervals/Alerts/Reminder 2 hours to 7 days

CE WEEE Compliance

Conductivity Accuracy 2 8 5 % from (1µS/cm - 260 mS/cm) 5 different stability modes Conductivity measurement Conductivity Measurement Range 8 91 µS/cm to 299 mS/cm Conductivity resolution 8 01 µS/cm with 2 digds
Custom Castration Standards User-defined standard sets

Download via USB connection to PC or fissh stick Automatically transfer antire data log or as readings are taken Data Export

Digital (Intelligent) electrode inputs 2

Dimensions (H x W x D) 7 8 in = 3 7 in x 1 4 in | 197 mm = 95 mm = 36 mm

Display

Display is assing a born one or two probes | Q4 did crist |
Simultaneous readings from two probes | Q4 did crist |
P4 pt, mV beneparative |
Conductivity Conductivity, TOS salarity restativity temperature |
LOO disassive angree, pressure impressure |
LBOO disassive angree, pressure impressure |
LBOO disassive through the pressure |
LBOO disassive through the pressure |
LBOO disassive through the pressure |
LBOO disassive through through the pressure |
LBOO disassive through through the pressure |
LBOO disassive through thro

Display Lock Function Continuous measurement or press to read mode available with averaging function for LDO measurement.

Display Type

240 x 160 pixel Display readings from a ne ar two probes pH pN, mV temporature Conductivity Conductivity, TDS salinity resistivity temporature LDD disactived daygen, pressure temporature

ORP/Redex mV temperature Sodium Sodium, mV temperature

DO Measurement Range 8 61 to 20 mg/L (6 to 200%)

DO Resolution 8 61 mg/L

Fixed Buffer Selection

(UPAC standards [OR 19265] or Technica buffer [D.N 19257] or 4-7-10 series or user defined

M12 digital (1) for intel-CAL probes 13" Interface Languages

Internal Data Storage

English French, German Italian Spanish Darish Dutch Polish Portuguese Turklish Sweedish Czech Russian

mV Accuracy 2 9 1 mV

mV Measurement at Stable Reading 5 (auto) stabilization settings

mV Resolution Operating Error Messages

Text messages displayed Operating Humidaty 90 % relative humiday i non-curdensing:

Keypad 5 to 45 °C Operating Interface

Operating Temperature

Productional ORUP standards | Including Zobell a suitation USB to PC / flesh stick

PC Dets Transfer Software Included pH Measurement at stable reading - 5 stabilization settings Optional accessory Salinity Resolution 8 81 ppl Warranty

3 years Meter Casing 1 meter submersion for 30 minutes | P67) Water Resistance

Weight. 0 74 lbs (0 335 kg)

2100P and 2100P IS **Portable Turbidimeter**

Features and Benefits

Laboratory Quality in a Portable Unit

The Hach 2100P and 2100P IS Portable Turbidimeters offer a level of performance previously possible only with laboratory instruments. Microprocessor-controlled operation and Hach's unique Ratio™ optics bring great accuracy, sensitivity, and reliability to field and in-plant testing.

Two Models for Specific Requirements

- 2100P Turbidimeter—Get fast, accurate turbidity testing in the field or the lab, over a wide range of samples. Compliant with USEPA Method 180.1 design criteria.
- 2100P IS Turbidimeter—Designed to meet international standards that mandate measurement using an LED light source.

The two-detector optical system compensates for color in the sample, light fluctuation, and stray light, enabling analysts to achieve laboratory-grade performance on a wide range of samples, even under difficult, onsite conditions.

The Hach 2100P and 2100P IS Portable Turbidimeters bring laboratory-level performance on-site, offering fast, accurate results and the ease-of-use analysts demand in the field. With a measurement range of 0 to 1000 NTU and a resolution of 0.01 NTU, the 2100P turbidimeter is ideal for regulatory monitoring, process control or field studies.

Specifications*

	2100P	2100P IS				
Measurement Method	Nephelometric Ratio					
Regulatory	Meets EPA Method 180.1 Meets EN ISO 7027					
Light Source	Tungsten lamp	Light-emitting diode (LED) @ 860 nm				
Range						
Automatic Range Mode	0 to 1000 NTU	0 to 1000 FNU				
Manual Range Selection	0 to 9.99, 0 to 99.9 and 0 to 1000 NTU	0 to 9.99, 0 to 99.9 and 0 to 1000 FNU				
Accuracy	±2% of reading plus stray light					
Repeatability	±1% of reading, or 0.01 NTU, whichever is greater	±1% of reading, or 0.01 FNU, whichever is greater				
Resolution	0.01 on lowest range					
Signal Averaging	Selectable on/off					
Power Requirement	4 AA alkaline batteries or optional battery eliminator					
Battery Life, Typical	300 tests with signal average mode off					
	180 tests with signal average mode on					
Operating Temperature	0 to 50°C (32 to 122°F)					
Sample Required	15 mL (0.5 oz.)					
Sample Cells	60 x 25 mm (2.36 x 1 in.) borosilicate glass with screv	v caps				
Dimensions	22.2 x 9.5 x 7.9 cm (8.75 x 3.75 x 3.12 in.)					
Welght	0.5 kg (1.1 lb.); shipping weight 2.7 kg (6 lb.)					
Warranty	2 years					

*Specifications subject to change without notice.

DW = drinking water WW = wastewater municipal PW = pure water / power IW = industrial water E = environmental C = collections FB = food and beverage

2100Q and 2100Q is Portable Turbidimeter

The Hach 2100Q and 2100Q is Portable Turbidimeters offer unsurpassed ease of use and accuracy in turbidity measurement. Only Hach offers this unique combination of advanced features, such as assisted calibration and simplified data transfer, and measurement innovation, giving you accurate results every time.

D

Features and Benefits

Easy Calibration and Verification

Hach 2100Q and 2100Q is Portable Turbidimeters provide confidence your measurements are right every time. On-screen assisted calibration and verification save you time and ensure accuracy. With an easy-to-follow interface, complicated manuals are not needed to perform routine calibrations. Single-standard RapidCal™ calibration offers a simplified solution for low level measurements.

Simple Data Transfer

Data transfer with the optional USB + Power Module is simple, flexible, and doesn't require additional software. All data can be transferred to the module and easily downloaded to your computer with a USB connection, providing superior data integrity and availability. With two different module options, you can customize connectivity and power to meet your unique needs.

Accurate for Rapidly Settling Samples

The Hach 2100Q Portable Turbidimeter incorporates an innovative Rapidly Settling Turbidity™ mode to provide accurate, repeatable measurements for difficult to measure, rapidly settling samples. An exclusive algorithm that

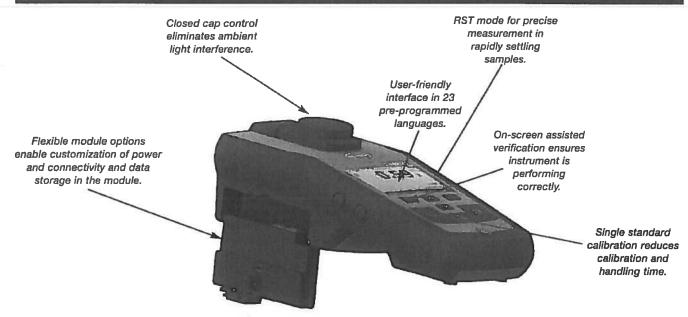
calculates turbidity based on a series of automatic readings eliminates redundant measurements and estimating.

Convenient Data Logging

Up to 500 measurements are automatically stored in the instrument for easy access and backup. Stored information includes: date and time, operator ID, reading mode, sample ID, sample number, units, calibration time, calibration status, error messages and the result.

Optical System for Precision in the Fleld

The two-detector optical system compensates for color in the sample, light fluctuation, and stray light, enabling analysts to achieve laboratory-grade performance on a wide range of samples, even under difficult site conditions.


Two Models for Specific Requirements

- 2100Q Turbidimeter—Compliant with USEPA Method 180.1 design criteria.
- 2100Q is Turbidimeter—Compliant with ISO 7027 design criteria.

DW = drinking water WW = wastewater municipal PW = pure water / power IW = industrial water E = environmental C = collections FB = food and beverage

Key Features

Specifications*

Measurement Method

Ratlo turbidimetric determination using a primary nephelometric light scatter signal (90°) to the transmitted light scatter signal.

Regulatory

2100Q: Meets EPA Method 180.1 2100Q is: Meets ISO 7027

Light Source

2100Q: Tungsten filament lamp

2100Q is: Light-emitting diode (LED) @ 860 nm

Range

0 to 1000 NTU (FNU)

Accuracy

±2% of reading plus stray light from 0 to 1000 NTU

Repeatability

±1% of reading, or 0.01 NTU (FNU), whichever is greater

Resolution

0.01 NTU on lowest range

Stray Light

<0.02 NTU (FNU)

Signal Averaging

Selectable on/off

Detector

Silicon photovoltaic

Reading Modes (user selectable)

Normal (Push to Read) Signal Averaging Rapidly Settling Turbidity

Data Logger

500 records

Power Requirement

110-230 Vac, 50/60 Hz (with Power or USB+Power Module)

4 AA alkaline batteries

Rechargeable NiMH (for use with USB+Power Module)

Operating Conditions

Temperature: 0 to 50°C (32 to 122°F)
Relative Humidity: 0 to 90% @ 30°C,

0 to 80% @ 40°C, 0 to 70% @ 50°C, noncondensing

Storage Conditions

-40 to 60°C (-40 to 140°F), instrument only

Languages

English, French, German, Italian, Spanish, Portuguese (BR), Portuguese (PT), Bulgarian, Chinese, Czech, Danish, Dutch, Finnish, Greek, Hungarian, Japanese, Korean, Polish, Romanian, Russian, Slovenian, Swedish, Turkish

Interface

Optional USB

Instrument Enclosure Rating

IP67 (closed lid, battery compartment excluded)

Protection Class

Power Supply: Class II

Certification

CE certified

Sample Required

15 mL (0.3 oz.)

Sample Cells

60 x 25 mm (2.36 x 1 in.) borosilicate glass with screw cap

Dimensions

22.9 x 10.7 x 7.7 cm (9.0 x4.2 x 3.0 in.)

Weigh

527 g (1.16 lb) without batteries

618 g (1.36 lb) with four AA alkaline batteries

Warranty

1 year

Appendix D

NEORSD Chlorophyll a Sampling Field Sheet

Stream:					Collectors:				
Location:				Date:					
RM:				Time:					
Lat/Long:_									
Number of	Rocks:		Total Area Scrap	ed:	cm ²		-		
						Diameter to Area Conversion	ı		
	f individual s	crape	Area of individua	•		Diameter (cm) Area (cm2)			
1			1			1.6 2.011			
2			2			1.7 2.27			
3			3			1.8 2.545			
4			4			1.9 2.835			
5			5			2.0 3.142			
6			6			2.1 3.464			
7			7			2.2 3.801			
			8			2.3 4.155	j		
			9						
			10		- 111 4	Total Sample Volume			
			11		Filter 1	LABLynx ID			
			12			Volml			
13			13		Filter 0	LABLumu ID			
14			14		Filler 2	LABLynx IDml			
			15			VOIIIII			
10			16 17		Eiltor 3	LABLynx ID			
18			18		i iilei 3	Volml			
10			19			VOIIIII			
20			20						
			21		١	Water Column Chlorophyll San	nnle		
			22			LABLynx ID			
			23		1 11101 1	Volml			
			24			VOI			
			25		Filter 2	LABLynx ID			
			Total:		1 11101 2	Volml			
					Filter 3	LABLynx ID			
					1 11101 0	Volml			
Flow:	None	Low	Normal	Elevated		High			
Tunkidit	Cloor	Low	Madarata*	∐¦ab*					
Turbidity:	Clear	Low	Moderate*	High*					
*Explain									
Sky:	Overcast	Cloudy	Partly Cloudy	Mostly Cle	ar	Clear			
ORy.	Overcast	Cloudy	r artiy Cloudy	wiostry Cle	al	Oleai			
Canopy:	Open	Mostly Open	Partly Closed	Closed					
Riparian	None	Narrow L R	Moderate L R	Wide L R	R				

Downstream Channel Direction	Record two most predominate substrates with an X, and check all present.				
330° N 30° 60° 270° W E 90° 120° 150° 150°	Riffle Run Reach Boulder/Slabs Bedrock Boulder/Slabs Cobble Gravel Sand Silt Hardpan Detritus Artificial				
Clinometer Left Bank° Right Bank°	Substrate Origin LimestoneTillsRip-rap SandstoneShaleWetlands LacustrineHardpanCoal Fines				
Left Bank° Right Bank°	SiltHeavyModerateNormalNone				
Left Bank° Right Bank°	EmbeddednessExtensiveModerateNormalNone				
Stream Widthsmm					
Notes:					

Length of Reach: _____m

Stream Drawing

Appendix E

DEPARTMENT OF ENVIRONMENTAL PROTECTION COMMONWEALTH OF PENNSYLVANIA

BUREAU OF LABORATORIES

LABORATORY ACCREDITATION PROGRAM

Certifies That

68-03670

Northeast Ohio Regional Sewer District Analytical Services 4747 East 49th Street, Cuyahoga Heights, OH 44125

dealing with Environmental Laboratories Accreditation The act of June 29, 2002 (P.L. 596, No. 90) Having duly met the requirement of (27 Pa. C.S. §§4104-4113) and the

National Environmental Laboratory Accreditation Program Standard

is hereby approved as an

Accredited Laboratory

As more fully described in the attached Scope of Accreditation

Expiration Date: 11/30/2015 Certificate Number: 008

Continued accreditation status depends on successful ongoing participation in the program

To be conspicuously displayed at the Laboratory

Shall not be used to imply endorsement by the Commonwealth of Pennsylvania Not valid unless accompanied by a valid Scope of Accreditation Customers are urged to verify the inboratory's current accreditation status

PA DEP is a NELAP recognized accreditation body

Laboratory Accreditation Program Aaren S. Alger, Chief Bureau of Laboratories

Attached to Certificate of Accreditation 008-001 expiration date November 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate of accreditation.

DEP Laboratory ID: 68-03670

EPA Lab Code: OH00300

TNI Code:

(216) 641-6000

Northeast Ohio Regional Sewer District Analytical Services 4747 East 49th Street

Cuyahoga Heights, OH 44125

Matrix	Mon	Datal	L1a	Water
MATTIX	Non-	- POTAI	nie.	Water

Method	Revision	Analyte	Accreditation Type	Primary	Effective Date
ASTM D4839-03		Total organic carbon (TOC)	NELAP	PA	11/25/2014
EPA 1000.0		Pimephales promelas	NELAP	PA	1/8/2009
EPA 1002.0		Ceriodaphnia dubia	NELAP	PA	1/8/2009
EPA 160.4		Residue, volatile	NELAP	PA	10/22/2008
EPA 1600		Enterococci	NELAP	PA	11/22/2010
EPA 1603		E. coli (Enumeration)	NELAP	PA	11/29/2007
EPA 1631	Е	Mercury	NELAP	PA	3/31/2008
EPA 180.1		Turbidity	NELAP	PA	12/31/2001
EPA 200.7	4.4	Aluminum	NELAP	PA	11/29/2001
EPA 200.7	4.4	Antimony	NELAP	PA	11/29/2001
EPA 200.7	4.4	Arsenic	NELAP	PA	11/29/200
EPA 200.7	4.4	Barium	NELAP	PA	11/29/200
EPA 200.7	4.4	Beryllium	NELAP	PA	11/29/200
EPA 200.7	4.4	Cadmium	NELAP	PA	11/29/200
EPA 200.7	4.4	Calcium	NELAP	PA	11/29/200
EPA 200.7	4.4	Chromium	NELAP	PA	11/29/200
EPA 200.7	4.4	Cobalt	NELAP	PA	11/29/200
EPA 200.7	4.4	Copper	NELAP	PA	12/31/200
EPA 200.7	4.4	lron	NELAP	PA	11/29/200
EPA 200.7	4.4	Lead	NELAP	PA	11/29/200
EPA 200.7	4.4	Magnesium	NELAP	PA	11/17/201
EPA 200.7	4.4	Manganese	NELAP	PA	11/29/200
EPA 200.7	4.4	Molybdenum	NELAP	PA	11/29/200
EPA 200.7	4.4	Nickel	NELAP	PA	11/29/200
EPA 200.7	4.4	Potassium	NELAP	PA	12/31/200
EPA 200.7	4.4	Selenium	NELAP	PA	11/29/200
EPA 200.7	4.4	Silver	NELAP	PA	11/29/200
EPA 200.7	4.4	Sodium	NELAP	PA	12/31/200
EPA 200.7	4.4	Thallium	NELAP	PA	4/15/201
EPA 200.7	4.4	Tin	NELAP	PA	11/29/200
EPA 200.7	4.4	Titanium	NELAP	PA	11/29/200
EPA 200.7	4.4	Vanadium	NELAP	PA	11/29/200
EPA 200.7	4.4	Zinc	NELAP	PA	12/31/200
EPA 245.1	3.0	Mercury	NELAP	PA	11/29/200
EPA 300.0	2.1	Bromide	NELAP	PA	11/22/201
EPA 300.0	2,1	Chloride	NELAP	PA	11/22/201
EPA 300.0	2.1	Fluoride	NELAP	PA	11/22/201
EPA 300.0	2.1	Nitrate as N	NELAP	PA	11/22/20
EPA 300.0	2.1	Orthophosphate as P	NELAP	PA	11/22/20
EPA 300.0	2.1	Sulfate	NELAP	PA	11/22/201

agen alger

The Pennsylvania Department of Environmental Protection Laboratory Accreditation Program is a NELAP recognized Accreditation Body. Customers are urged to verify the laboratory's current accreditation standing.

Page 1 of 4 www.dep.state,pa.us Issue Date: 11/25/2014

Attached to Certificate of Accreditation 008-001 expiration date November 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate of accreditation.

DEP Laboratory ID: 68-03670

EPA Lab Code: OH00300

TNI Code:

(216) 641-6000

Matrix: Non-Potable Water

Method	Revision	Analyte	Accreditation Type	Primary	Effective Date
EPA 3005	A	Preconcentration under acid	NELAP	PA	11/29/2007
EPA 3010	Α	Hot plate acid digestion (HNO3 + HCl)	NELAP	PA	11/29/2007
EPA 3015		Microwave-assisted acid digestion	NELAP	PA	11/29/2007
EPA 310.2		Alkalinity as CaCO3	NELAP	PA	9/20/2012
EPA 350,1		Ammonia as N	NELAP	PA	11/29/2007
EPA 351.2		Kjeldahl nitrogen, total (TKN)	NELAP	PA	11/17/2010
EPA 353.2		Nitrate as N	NELAP	PA	11/29/2007
EPA 353.2		Total nitrate-nitrite	NELAP	PA	11/17/2010
EPA 365 1		Phosphorus, total	NELAP	PA	10/22/2008
EPA 410.4		Chemical oxygen demand (COD)	NELAP	PA	11/29/2007
EPA 420.4		Total phenolics	NELAP	PA	11/17/2010
EPA 445		Chlorophyll A	NELAP	PA	11/22/2010
EPA 6010		Aluminum	NELAP	PA	11/29/2007
EPA 6010		Antimony	NELAP	PA	11/29/2007
EPA 6010		Arsenic	NELAP	PA	11/29/2007
EPA 6010		Barium	NELAP	PA	11/29/2007
EPA 6010		Beryllium	NELAP	PA	11/29/2007
EPA 6010		Cadmium	NELAP	PA	11/29/2007
EPA 6010		Calcium	NELAP	PA	11/29/2007
EPA 6010		Chromium	NELAP	PA	11/29/2007
EPA 6010		Cobalt	NELAP	PA	11/29/2007
EPA 6010		Copper	NELAP	PA	12/31/2007
EPA 6010		1ron	NELAP	PA	11/29/2007
EPA 6010		Lead	NELAP	PA	11/29/2007
EPA 6010		Magnesium	NELAP	PA	11/29/2007
EPA 6010		Manganese	NELAP	PA	11/29/2007
EPA 6010		Molybdenum	NELAP	PA	11/29/2007
EPA 6010		Nickel	NELAP	PA	11/29/2007
EPA 6010		Potassium	NELAP	PA	12/31/2007
EPA 6010		Selenium	NELAP	PA	11/29/2007
EPA 6010		Silver	NELAP	PA	11/29/2007
EPA 6010		Sodium	NELAP	PA	12/31/2007
		Thallium	NELAP	PA	
EPA 6010		61		PA	4/15/2014
EPA 6010		Tin	NELAP		11/29/2007
EPA 6010		Titanium	NELAP	PA	11/29/2007
EPA 6010		Vanadium	NELAP	PA	11/29/2007
EPA 6010		Zinc	NELAP	PA	12/31/2007
EPA 7470		Mercury	NELAP	PA	11/29/2007
Enterolert		Enterococci (Enumeration)	NELAP	PA	11/22/2010
O1A 1677		Available cyanide	NELAP	PA	11/29/2007
SM 2540 B		Residue, total	NELAP	PA	11/29/2007
SM 2540 C		Residue, filterable (TDS)	NELAP	PA	11/29/2007
SM 2540 D		Residue, nonfilterable (TSS)	NELAP	PA	11/29/2007
SM 2540 F		Residue, settleable	NELAP	PA	11/29/2007
SM 2550 B		Temperature, deg C	NELAP	PA	10/22/2008
SM 3500-Cr B	20-22	Chromium VI	NELAP	PA	11/29/2007
SM 4500-CN- C/E		Total cyanide	NELAP	PA	11/29/2007

The Pennsylvania Department of Environmental Protection Laboratory Accreditation Program is a NELAP recognized Accreditation Body. Customers are urged to verify the laboratory's current accreditation standing.

Page 2 of 4

www.dep.state.pa.us

Issue Date: 11/25/2014

Attached to Certificate of Accreditation 008-001 expiration date November 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate of accreditation.

DEP Laboratory ID: 68-03670

EPA Lab Code: OH00300

TNI Code:

(216) 641-6000

Matrix: Non-Potable Water

Method	Revision	Analyte	Accreditation Type	Primary	Effective Date
SM 4500-CN- G		Amenable cyanide	NELAP	PA	11/29/2007
SM 4500-C1 E		Total residual chlorine	NELAP	PA	11/29/2007
SM 4500-C1- C		Chloride	NELAP	PA	11/19/2012
SM 4500-H+ B		pH	NELAP	PA	11/29/2007
SM 4500-NO2- B		Nitrite as N	NELAP	PA	11/29/2007
SM 4500-Norg B		Kjeldahl nitrogen, total (TKN)	NELAP	PA	10/22/2008
SM 4500-P B	2	Preliminary treatment of phosphate samples	NELAP	PA	11/13/2013
SM 4500-P E		Orthophosphate as P	NELAP	PA	11/13/2013
SM 5210 B		Biochemical oxygen demand (BOD)	NELAP	PA	11/29/2007
SM 5210 B		Carbonaceous BOD (CBOD)	NELAP	PA	11/29/2007
SM 9222 D		Fecal coliform (Enumeration)	NELAP	PA	11/29/2007
SM 9223 Colilert MPN or QT		E. coli (Enumeration)	NELAP	PA	11/29/2007
SM 9223 Colilert MPN or QT		Total coliform (Enumeration)	NELAP	PA	11/22/2010

Matrix: Solid and Chemical Materials

Method	Revision	Analyte	Accreditation Type	Primary	Effective Date
EPA 245.1	3.0	Mercury	NELAP	PA	11/22/2010
EPA 3051		Microwave digestion of solids (HNO3 only)	NELAP	PA	11/17/2010
EPA 6010		Aluminum	NELAP	PA	11/22/2010
EPA 6010		Antimony	NELAP	PA	11/13/2013
EPA 6010		Arsenic	NELAP	PA	11/22/2010
EPA 6010		Barium	NELAP	PA	11/22/2010
EPA 6010		Beryllium	NELAP	PA	11/22/2010
EPA 6010		Cadmium	NELAP	PA	11/22/2010
EPA 6010		Calcium	NELAP	PA	11/22/2010
EPA 6010		Chromium	NELAP	PA	11/22/2010
EPA 6010		Cobalt	NELAP	PA	11/22/2010
EPA 6010		Copper	NELAP	PA	11/22/2010
EPA 6010		lron	NELAP	PA	11/22/2010
EPA 6010		Lead	NELAP	PA	11/22/2010
EPA 6010		Magnesium	NELAP	PA	11/22/2010
EPA 6010		Manganese	NELAP	PA	11/22/2010
EPA 6010	В	Metals by ICP/AES	NELAP	PA	1/22/2013
EPA 6010		Molybdenum	NELAP	PA	11/22/2010
EPA 6010		Nickel	NELAP	PA	11/22/2010
EPA 6010		Potassium	NELAP	PA	11/22/2010
EPA 6010		Selenium	NELAP	PA	11/22/2010
EPA 6010		Silver	NELAP	PA	11/22/2010
EPA 6010		Sodium	NELAP	PA	11/22/2010
EPA 6010		Thallium	NELAP	PA	11/22/2010
EPA 6010		Tin	NELAP	PA	4/15/2013
EPA 6010		Titanium	NELAP	PA	11/22/2010
EPA 6010		Vanadium	NELAP	PA	11/22/2010
EPA 6010		Zinc	NELAP	PA	11/22/2010

auen alger

The Pennsylvania Department of Environmental Protection Laboratory Accreditation Program is a NELAP recognized Accreditation Body. Customers are urged to verify the laboratory's current accreditation standing.

Page 3 of 4

www.dep.state.pa.us

Issue Date: 11/25/2014

Attached to Certificate of Accreditation 008-001 expiration date November 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate of accreditation.

DEP Laboratory ID: 68-03670

EPA Lab Code: OH00300

TNI Code:

(216) 641-6000

asen alger

The Pennsylvania Department of Environmental Protection Laboratory Accreditation Program is a NELAP recognized Accreditation Body. Customers are urged to verify the laboratory's current accreditation standing.

Page 4 of 4

www.dep.state.pa.us

Issue Date: 11/25/2014

Appendix F

February 4, 2015

Mr. John Rhoades Supervisor of Environmental Assessment Northeast Ohio Regional Sewer District 4747 East 49th Street Cuyahoga Heights, Ohio 44125

Dear Mr. Rhoades:

This letter is to acknowledge that I am responsible for assisting the Northeast Ohio Regional Sewer District's Water Quality and Industrial Surveillance Division in conducting stream habitat assessments using the Qualitative Habitat Evaluation Index for the 2015 Big Creek, Cuyahoga River, Euclid Creek, Hemlock Creek, Mill Creek, and West Creek Environmental Monitoring Project Study Plans.

It is understood that an Ohio Environmental Protection Agency Level 3 Qualified Data Collector Certification for Stream Habitat Assessment is required to perform these tasks and that I am responsible for maintaining my Level 3 QDC Certification during the term of these Study Plans.

In addition, I have not been convicted nor pleaded guilty to a Violation of Section 2911.21 of the Revised Code (criminal trespass) or a substantially similar municipal ordinance within the previous five years.

Sincerely

Jonathan Brauer

Stormwater Inspector

Northeast Ohio Regional Sewer District

4747 East 49th Street

Cuyahoga Heights, Ohio 44125

April 14, 2015

Mr. John Rhoades Manager of Water Quality and Industrial Surveillance Northeast Ohio Regional Sewer District 4747 East 49th Street Cuyahoga Heights, Ohio 44125

Re:

2015 Benthic Services PO 15001329

Dear Mr. Rhoades:

This letter is to acknowledge that I am responsible for the identification of benthic macroinvertebrates for the following Northeast Ohio Regional Sewer District Study Plans:

- 2015 Big Creek Environmental Monitoring
- 2015 Cuyahoga River Environmental Monitoring
- 2015 Euclid Creek Environmental Monitoring
- 2015 Hemlock Creek Environmental Monitoring
- 2015 Mill Creek Environmental Monitoring
- 2015 West Creek Environmental Monitoring

It is understood that an Ohio Environmental Protection Agency Level 3 Qualified Data Collector Certification for Benthic Macroinvertebrate, with the specialty of identification, is required to perform these tasks and that I am responsible for maintaining my Level 3 QDC Certification during the term of these Study Plans.

In addition, I have not been convicted nor pleaded guilty to a Violation of section 2911.21 of the Revised Code (criminal trespass) or a substantially similar municipal ordinance within the previous five years.

Sincerely,

Bert Remley

Senior Taxonomist

Bremley @thirdrock consultants.com

albert W. Kember I

Will send Wildlife Permit upon Receipt

Appendix H

References

- Chlorophyll a Sampling and Field Filtering Standard Operating Procedure (SOP-EA001-00)
- EPA New England- Region 1. (2005). Standard operating procedure for calibration and field measurement procedures for the YSI Model 6-Series Sondes and Data Logger (Including: temperature, pH, specific conductance, turbidity, dissolved oxygen, chlorophyll, rhodamine WT, ORP, and barometric pressure) (7th Revision). North Chelmsford, MA: The Office of Environmental Measurement and Evaluation, Ecosystem Assessment- Ecology Monitoring Team.
- Ohio Environmental Protection Agency. (1987a). Biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters (Updated January 1988; September 1989; November 2006; August 2008). Columbus, OH: Division of Water Quality Monitoring and Assessment.
- Ohio Environmental Protection Agency. (1987b). Biological criteria for the protection of aquatic life: Volume III. Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities (Updated September 1989; March 2001; November 2006; and August 2008). Columbus, OH: Division of Water Quality Monitoring and Assessment.
- Ohio Environmental Protection Agency. (1997). Draft. Biological Criteria for the Protection of Aquatic Life: Volume IV: Fish and Macroinvertebrate Indicies for Ohio's Lake Erie Nearshore Waters, Harbors, and Lacustuaries. Columbus, OH: Division of Surface Water, Ecological Assessment Unit.
- Ohio Environmental Protection Agency. (2006). *Methods for assessing habitat in flowing waters: using the Qualitative Habitat Evaluation Index (QHEI)*. (Ohio EPA Technical Bulletin EAS/2006-06-1). Columbus, OH: Division of Surface Water; Division of Ecological Assessment Section.
- Ohio Environmental Protection Agency. (2010). Draft. Methods of Assessing Habitat in Lake Erie Shoreline Waters Using the Qualitative Habitat Evaluation Index (QHEI) Approach (Version 2.1). Columbus, OH: Division of Surface Water.
- Ohio Environmental Protection Agency. (2011). *State of Ohio Water Quality Standards Ohio Administrative Code Chapter 3745-1* (Revision: March 16, 2011; Effective June 16, 2011). Columbus, OH: Division of Surface Water; Standards and Technical Support Section.
- Ohio Environmental Protection Agency. (2012a). Field Evaluation Manual for Ohio's Primary Headwater Habitat Stream. Columbus, OH: Division of Surface Water; Division of Ecological Assessment Section.

- Ohio Environmental Protection Agency. (2012b). Ohio 2012 Integrated Water Quality Monitoring and Assessment Report. Columbus, Ohio: Division of Surface Water.
- Ohio Environmental Protection Agency. (2013). Surface Water Field Sampling Manual for water chemistry, bacteria, and flows. Columbus, OH: Division of Surface Water.