## Level 3 Project Study Plan

## 2016 West Creek Environmental Monitoring

## (1) Objectives

During 2007 and 2008, the Northeast Ohio Regional Sewer District (NEORSD) completed baseline environmental assessments at five sites on West Creek which included river miles (RM) 7.90, 3.65, 2.40, 1.60, and 0.20. The baseline sampling in West Creek was completed to assess the conditions of the creek prior to restoration activities.

From July 13, 2012, through October 12, 2012, in-stream restoration activities were completed on West Creek at RM 3.65, RM 2.10 and RM 1.60. The goals of the restoration activities were to improve existing in-stream habitat, construct additional in-stream habitat, remove or alter existing fish migration barriers, and re-stabilize eroding stream banks by utilizing bioengineered technology and natural channel design techniques.

From spring 2013 through spring 2014, in-stream restoration activities took place at West Creek RM 0.20. The goal of the restoration activities was to construct a working, living floodplain. This was accomplished with the construction and improvement of in-stream habitat, demolition of a hardened channel that confined the creek, and re-stabilization and re-vegetation of the stream bank in the affected area. Also accomplished was the construction of a backwater channel within the floodplain to capture overbank flows from the channel and Cuyahoga River.

In 2014 and 2015, post-restoration monitoring was conducted at RMs 3.65, 2.10, 1.60, and 0.20 on West Creek where in-stream habitat restoration work was completed. 2015 monitoring also included RM 5.30 as well as an evaluation of RM 0.20 on an unnamed tributary to West Creek. This unnamed tributary enters West Creek at RM 0.85. Results from the post monitoring were evaluated to determine any improvements in the fish or macroinvertebrate communities and the results were compared to data collected during the 2007 and 2008 West Creek Restoration Evaluation studies to illustrate spatial and temporal trends.

In 2016, environmental assessment work will be completed at the same sites as in 2015. Stream assessments will be conducted by NEORSD Level 3 Qualified Data Collectors certified by the Ohio EPA in Fish Community Biology, Benthic Macroinvertebrate Biology, Chemical Water Quality, and Stream Habitat Assessment. Assessments will include electrofishing, macroinvertebrate sampling, water chemistry sampling, and a habitat evaluation. The results obtained from this assessment will be evaluated using Ohio EPA's Qualitative Habitat Evaluation Index (QHEI), Index of Biotic Integrity (IBI), and Invertebrate

2016 West Creek Environmental Monitoring April 7, 2016

Community Index (ICI). An examination of the individual metrics that comprise these indices, along with water quality data and the Ohio EPA Macroinvertebrate Field Sheet, will also be used. Water chemistry data will also be compared to the Ohio Water Quality Standards to determine the attainment status of the creek. See Appendix H for a list of references.

In addition, chlorophyll *a* levels in the creek may be measured at one location in the vicinity of a long-term data sonde station. The data sonde, along with chlorophyll *a* results, will provide a more comprehensive understanding of the relationship among algal production, nutrient levels, and dissolved oxygen diel swings in the creek. The data sonde is located on the downstream side of the Schaaf Road bridge in Cleveland, OH (Lat: 41.41374, Lon: -81.64749). This location is approximately 100 meters upstream of the site at RM 0.20.

(2) Nonpoint/Point Sources

| Point Sources            | Nonpoint Sources |
|--------------------------|------------------|
| Combined Sewer Overflows | Urban runoff     |
| Sanitary Sewer Overflows | Landfills        |
| Storm Sewer Outfalls     | Spills           |
| Home Septic Systems      |                  |

A map has been provided in section 6 to show point sources that may be influencing the water quality at each sample location. These sources, along with the ones listed in the table above, may be impacting the health of the fish and benthic macroinvertebrate communities in the West Creek watershed.

## (6) Sampling Locations

The following electrofishing, macroinvertebrate and water chemistry sample locations, listed from upstream to downstream on West Creek, will be surveyed during the 2016 field season.

| 2016<br>April | West Creek E<br>7, 2016 | nvironmental | Monitor | ring        |  |
|---------------|-------------------------|--------------|---------|-------------|--|
| Water         | T .'. 1                 | T . 1        | River   | <b>T</b> (* |  |

| Water<br>Body                            | Latitude | Longitude | River<br>Mile                    | Location                                     | USGS HUC 8<br>Number Name | Purpose                                                                                                                         |
|------------------------------------------|----------|-----------|----------------------------------|----------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| West<br>Creek                            | 41.3899  | -81.6982  | 5.30                             | Upstream of<br>Ridgewood Drive               | 04110002<br>Cuyahoga      | Evaluate water<br>chemistry, habitat, fish,<br>& macroinvertebrates<br>downstream of former<br>landfill                         |
| West<br>Creek                            | 41.4103  | -81.6943  | .6943 3.65 Upstream<br>Broadview |                                              | 04110002<br>Cuyahoga      | Evaluate water<br>chemistry, habitat, fish,<br>& macroinvertebrates<br>after restoration and<br>removal of two fish<br>barriers |
| West<br>Creek                            | 41.4136  | -81.6705  | 2.10                             | Brooklyn Heights<br>downstream from<br>I-480 | 04110002<br>Cuyahoga      | Evaluate water<br>chemistry, habitat, fish,<br>& macroinvertebrates<br>after restoration and<br>habitat enhancement             |
| West<br>Creek                            | 41.4144  | -81.6618  | 1.60                             | Downstream from<br>Lancaster Drive<br>Bridge | 04110002<br>Cuyahoga      | Evaluate water<br>chemistry, habitat, fish,<br>& macroinvertebrates<br>after restoration and<br>habitat enhancement             |
| Unnamed<br>Tributary<br>to West<br>Creek | 41.4047  | -81.6539  | 0.20                             | West Creek Rd                                | 04110002<br>Cuyahoga      | Evaluate water<br>chemistry, habitat, fish,<br>& macroinvertebrates                                                             |
| West<br>Creek                            | 41.4145  | -81.6477  | 0.20                             | Between Granger<br>& Schaaf Roads            | 04110002<br>Cuyahoga      | Evaluate habitat, fish, &<br>macroinvertebrates after<br>restoration                                                            |





## West Creek Study Plan

#### Overview Map



## Legend

- Monitoring Site
- Regional Drainage
- CSO Outfall
- District Facility
- Outfalls
- NEORSD CSO Combined Sewer
- NEORSD CSO Responsibility Sewer
- NEORSD Intercommunity Relief Sewer
- NEORSD INTERCEPTOR
- Local Combined Sewer
- Local Culverted Stream
- Local Sanitary Sewer



This information is for display purposes only. The Northeast Ohio Regional Sewer District (NEORSD) makes no warranties, expressed or implied, with respect to the accuracy of and the use of this map for any specific purpose. This map was created to serve as base information for use in Geographic Information Systems (GIS) for a variety of planning and analysis purposes. The NEORSD expressly disclaims any fability that may result from the use of this map. For more information, please contact: NEORSD GIS Services, 3900 Euclid Avenue, Cleveland, Ohio 44115 ----(216) 881-6600 ---GIS@neorsd.org

## 2016 Project Study Plans

## (3) Parameters Covered

Fish specimens will be identified to species level, weighed, counted and examined for the presence of external anomalies including DELTs (deformities, eroded fins, lesions and tumors). An Ohio EPA Fish Data Sheet (Appendix A) will be completed during each assessment. Quantitative fish sampling is expected to be conducted at all locations.

Macroinvertebrate community assemblages will be collected from each location. Third Rock Consultants, LLC will identify and enumerate the specimens collected from each site<sup>1</sup>. All specimens will be identified to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b)<sup>2</sup>. The NEORSD Macroinvertebrate Field Sheet (Appendix A) will be completed at each site during sampler retrieval or when qualitative sampling is conducted.

Stream habitat will be measured by scoring components of the QHEI at all locations, including the substrate, instream cover, channel morphology, riparian zone, bank erosion, pool/glide and riffle/run quality and gradient. The HHEI will be conducted at those sites with drainage areas less than one square mile listed under PSPs with general watershed monitoring. The Lacustuary QHEI (L-QHEI) will be performed at sites that are affected by the water level of Lake Erie. Examples of the Ohio EPA field sheets for the QHEI, L-QHEI and the HHEI can be found in Appendix A.

Water chemistry samples will be collected at each electrofishing/ macroinvertebrate sampling site included in the study. Water chemistry samples will be analyzed by NEORSD's Analytical Services Division. Appendix B lists the parameters to be tested along with the detection limits and practical quantitation limits. Field measurements for dissolved oxygen, pH, temperature, conductivity and turbidity will also be performed. A Surface Water Condition Sampling Field Data Form will be completed at each site during each sampling event (Appendix A).

Benthic and water column chlorophyll *a* samples may be collected from stream locations. Chemical and physical water quality parameters to be measured in

<sup>&</sup>lt;sup>1</sup> It is anticipated that Third Rock Consultants, LLC will be contracted to complete all macroinvertebrate identification. However, awarding of the contract is dependent upon approval, which, to date, has not occurred. An amended study plan will be submitted if someone else is awarded the contract.

<sup>&</sup>lt;sup>2</sup>See Appendix H for a list of all references.

conjunction with the chlorophyll *a* samples include total phosphorus, dissolved reactive phosphorus, nitrite, nitrate+nitrite, ammonia, alkalinity, turbidity and suspended solids. In the Cuyahoga River, YSI 6600EDS, or EXO2 data sondes may be installed at RMs 16.20, 10.75, 10.10, and 7.00 around the time that this sampling is conducted to more frequently monitor dissolved oxygen, temperature, conductivity, specific conductivity and pH.

## (4) Field Collection and Data Assessment Techniques

Field collections for fish will be conducted at all stream locations. Sampling will be conducted using longline, backpack, or boat electrofishing techniques and will consist of shocking all habitat types within a sampling zone. Headwater and wading sites, which are 0.15 and 0.20 kilometers in length, respectively, will be surveyed by moving from downstream to upstream. Boat sites, which are 0.50 kilometers in length, will be surveyed by moving from upstream to downstream. The stunned fish will be collected and placed into a live well for later identification. The longline, backpack, and boat electrofishing zones will be assessed one to three times during the field season (June 15 - October 15).

Fish will be identified to the species level, weighed, counted, and examined for the presence of external anomalies including DELTs. Fish easily identified (commonly collected from year to year) will be returned to the site from which they are collected. Fish species difficult to identify will be brought back to the laboratory for verification by NEORSD Level 3 Fish Qualified Data Collectors (QDC). If necessary, vouchers will be sent to The Ohio State University Museum of Biological Diversity for verification by the Curator and/or Associate Curator of Fish. Voucher specimens will be collected as described in section (14). Endangered species and those too large for preservation will not be collected as voucher specimens, but will instead be photographed. Photographed vouchers will include features that permit definitive identification of the particular species.

Fish will be preserved in 10 percent formalin in the field, soaked in tap water for 24 to 48 hours after 5 to 7 days, then transferred to solutions of 30 and 50 percent ethanol for 5 to 7 days each and, finally, to 70 percent ethanol for long-term storage. Specimens larger than six inches will be slit along the right side and then soaked in formalin for approximately 10 to 14 days before being transferred to water and solutions of 30, 50 and 70 percent ethanol. Label information will include location (description and coordinates), date, time, collectors' names and sample identification code for each specimen collected.

Macroinvertebrate sampling will be conducted using quantitative and qualitative sampling techniques. Quantitative sampling will be done using a modified Hester-Dendy multi-plate artificial substrate sampler (HD) that is colonized for a six-week period. Multiple HD samplers may be installed at one or all sampling

locations in case samplers are lost due to vandalism, burial, etc. or for the purposes of providing a replicate sample. Qualitative sampling will be conducted using a D-frame dip net when HD samplers are retrieved. The NEORSD Macroinvertebrate Field Sheet will be completed during each HD retrieval. Ronald Maichle of NEORSD, a Level 3 QDC for Benthic Macroinvertebrate Biology, may identify specimens in the replicate sample to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b).

Macroinvertebrate voucher specimens for both quantitative and qualitative sampling will be collected as described in section (14). Macroinvertebrate community assemblages collected will be shipped to Third Rock Consultants, LLC (Lexington, KY) for identification and enumeration. Third Rock Consultants, LLC will identify specimens to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b).

A detailed description of the sampling and analysis methods utilized in the fish community and macroinvertebrate surveys, including calculations of the IBI, MIwb, and ICI, can be found in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volumes II* (1987a) and *III* (1987b). Methods for assessing fish and macroinvertebrate communities in lacustuary zones can be found in Ohio EPA's draft *Biological Criteria for the Protection of Aquatic Life, Volume IV* (1997).

The QHEI, as described in Ohio EPA's *Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI)* (2006) will be used to assess aquatic habitat conditions at each sample location. The L-QHEI will be used where appropriate and will follow Ohio EPA's *Methods of Assessing Habitat in Lake Erie Shoreline Waters Using the Qualitative Habitat Evaluation Index (QHEI) Approach (Version 2.1)* (2010).

The HHEI as described in Ohio EPA's *Field Evaluation Manual for Ohio's Primary Headwater Habitat Streams* (2012a) will be used, when necessary, to conduct use attainability analyses and to classify the actual and expected biological conditions in primary headwater habitat streams.

Water chemistry sampling may occur across a variety of flow conditions. Techniques used for water chemistry sampling and chemical analyses will follow the *Surface Water Field Sampling Manual* (Ohio EPA, 2015a). Chemical water quality samples from each site will be collected with at least one 4-liter disposable polyethylene cubitainers with disposable polypropylene lids and two 473-mL plastic bottles. Water samples collected for analysis of dissolved reactive

phosphorus will be filtered using a 0.45-µm PVDF syringe filter and will be collected in a 125-mL plastic bottle. Bacteriological samples will be collected in a sterile plastic bottle preserved with sodium thiosulfate. All water quality samples will be collected as grab samples. Field blanks and duplicate samples will each comprise not less than 5% of the total samples collected for this study plan, for a total frequency of quality control samples of not less than 10% of the total samples collected. With the exception of bacteriological duplicate samples, the acceptable percent RPD will be based on the ratio of the sample concentration and detection limit (Ohio EPA, 2015a): Acceptable % RPD =  $[(0.9465X^{-0.344})*100] + 5$ , where X = sample/detection limit ratio. For bacteriological duplicates, duplicate samples more than 5x apart from one another ( $\[MPD > 133.3\]\)$  will be rejected in accordance with the Ohio EPA approved method for data validation of bacteriological samples outlined in Section F of the Ohio 2012 Integrated Water Quality Monitoring and Assessment Report (Ohio EPA, 2012b). Those RPDs that were higher than acceptable may indicate potential problems with sample collection and, as a result, the data will not be used for comparison to the water quality standards. Acid preservation of the samples, as specified in the NEORSD laboratory's standard operating procedure for each parameter, will occur in the field. Appendix B lists the analytical method, method detection limit and practical quantitation limit for each parameter analyzed. Field analyses include the use of either a YSI-556 MPS Multi-Parameter Water Quality Meter, YSI EXO1 sonde, or YSI 600XL sonde to measure dissolved oxygen (DO), water temperature, conductivity and pH; and when necessary, a Hanna HI 98129 meter to measure pH and a Hach HQ30d meter with LDO101 probe to measure DO. Field turbidity will be measured using either a Hach 2100P Portable Turbidimeter or Hach 2100O Turbidimeter. Specifications for these meters have been included in Appendix C.

Benthic and water column chlorophyll a samples may be collected if time and resources allow. Sampling methods will follow those detailed in the NEORSD Chlorophyll a Sampling and Field Filtering Standard Operating Procedure (SOP-EA001-00). A Chlorophyll a Sampling Field Sheet will be completed for each site (Appendix D). Water chemistry grab samples will be collected at the same time using the methods discussed previously and will be analyzed for nutrients, turbidity, alkalinity and suspended solids. Additionally in the Cuyahoga River, approximately 24-hours prior to each chlorophyll a sampling event, YSI 6600 EDS, or EXO2 data sondes may be deployed at RMs 16.20, 10.75, 10.10 and 7.00. If installed, each data sonde will record, at fifteen-minute intervals, dissolved oxygen concentration, pH, temperature, and conductivity from the time the data sonde is deployed until the time it is retrieved. These data sondes will be placed in the stream by inserting each one into a 4.5-inch PVC pipe with holes drilled into the sides of the lower third of the pipe to allow water to pass through it. The data sondes will remain in the river for approximately 24-hours or longer following collection of the chlorophyll *a* samples.

Where possible, data assessment will include an analysis of temporal and spatial trends in the collected data. Species assemblages and individual metrics will be analyzed. Graphs that show current and historic QHEI, L-QHEI, IBI, LIBI, MIwb, ICI, and LICI scores and how these scores compare to attainment status of biocriteria will be prepared. Water chemistry data collected will be compared to Ohio water quality standards to determine whether any excursions from the applicable water quality criteria have occurred. It will also be used to determine any relationships among individual parameters and chlorophyll *a* concentrations. Comparisons between water quality and biological community health will only be made if at least three water quality samples have been collected from that site.

(5) Stream Flow Measurement

Stream flow will be recorded for all locations during each electrofishing pass utilizing data from the United States Geological Survey (USGS) gauge station nearest the stream location, if applicable.

Stream flow will be measured with a Marsh-McBirney FloMate Model 2000 Portable Flow Meter, a HACH FH950 Flow Meter or an Aquaflow Probe Model 6900, which measure flow in feet per second, when HD samplers are installed and retrieved. The specifications for the flow meters can be found in Appendix C.

(7) Schedule

One to three electrofishing surveys will be conducted at each site between June 15 and October 15, 2016. Surveys will be conducted at least three weeks apart. Specific dates have not been scheduled. River flow and weather conditions will be assessed weekly to determine when each electrofishing pass will be conducted.

Artificial substrate samplers will be installed at stream locations between June 15 and August 19, 2016, and retrieved six weeks later. Qualitative macroinvertebrate sampling will be conducted one time at all sites. Specific dates have not been scheduled. River flow and weather conditions will be assessed weekly to determine when the HD sampler installations and retrievals and qualitative sampling will be conducted.

QHEI, and if necessary, HHEI and L-QHEI habitat evaluations will be conducted one time between June 15 and October 15, 2016. QHEI evaluations will be conducted around the same time as one of the electrofishing surveys.

Water chemistry samples will be collected a minimum of three times from stream locations between June 15 and October 15, 2016.

Benthic and water column chlorophyll *a* samples may be collected at least one time from stream locations between June 15 and October 15, 2016. These samples will be collected under low-flow conditions.

## (8) QA/QC

Quality assurance and quality control of sampling and analysis methods for habitat, fish, and macroinvertebrate evaluations will follow Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volumes II* (1987a) and *III* (1987b), *Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI)* (2006), *Field Evaluation Manual for Ohio's Primary Headwater Habitat Streams* (2012a), draft *Biological Criteria for the Protection of Aquatic Life: Volume IV: Fish and Macroinvertebrate Indicies for Ohio's Lake Erie Nearshore Waters, Harbors, and Lacustuaries* (1997) and *Methods of Assessing Habitat in Lake Erie Shoreline Waters Using the Qualitative Habitat Evaluation Index (QHEI) Approach (Version 2.1)* (2010)

Electrofishing equipment will be used according to the guidelines listed in the operation and maintenance manual provided by Smith-Root, Inc. Malfunctioning equipment will not be used to collect data. Proper steps will be taken to correct any problems as soon as possible, whether by repairing in the field, at the NEORSD Environmental & Maintenance Services Center, or by contacting the supplier or an appropriate service company.

Fish species difficult to identify will be brought back to the laboratory for verification by Level 3 Fish QDC's, and if necessary, sent to The Ohio State University Museum of Biological Diversity for verification by the Curator and/or Associate Curator of Fish. Voucher specimens will be collected as described in section (14). Endangered species and those too large for preservation will not be collected as voucher specimens, but will instead be photographed. Photographed vouchers will include features that permit definitive identification of the particular species.

All macroinvertebrate community assemblages from stream locations, except for the replicate sample, will be collected and shipped to Third Rock Consultants, LLC for identification and enumeration. All specimens will be identified to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b). All macroinvertebrate specimens will be returned to NEORSD. At least two voucher specimens of each species, when available, will be separated into individual vials and kept as described in section (14). The remaining specimens for each site will be returned in a single container labeled with the site number and collection method and date. All specimens and accompanying chain-of-custody documentation will be retained by NEORSD and stored at the Environmental & Maintenance Services Center for a period not less than ten years.

Water samples obtained for chemical analyses will be collected, preserved (see Section 4), labeled and then placed on ice inside the field truck. The field truck will remain locked at all times when not occupied/visible. Sampling activities, including sample time and condition of surface water sampled, will be entered in a field log book and on the Surface Water Condition Sampling Field Data Form. The samples will then be delivered immediately to the NEORSD Analytical Services cooler, after which the door to the cooler will be locked, and the samples will be transferred to the custody of Analytical Services. The NEORSD Analytical Services Quality Manual and associated Standard Operating Procedures are on file with Ohio EPA. The Quality Assurance Officer at Analytical Services will send updates, revisions and any information on document control to Ohio EPA as needed.

For benthic and water column chlorophyll *a* sampling, three filtrations will be performed for each sample. A field filtration blank will be submitted for every 20 samples.

Calibration of YSI 6600EDS and EXO2 data sondes will be done according to the YSI Environmental Operations Manual. The conductivity will be calibrated first using a 1.413 mS/cm standard. Second, the pH will be calibrated using two different buffers (7 and 10 s.u.). The DO will be calibrated last with an acceptable error of 0.2 mg/L.

Once the sondes are removed from the river, the accuracy of the data that has been collected will be checked by comparing readings taken by the sondes to known standards. If the measurements taken at this time meet quality control goals, all of the data collected since the last calibration will be considered accurate. The acceptable differences for pH and conductivity will be  $\pm 0.3$  with pH 7 buffer and  $\pm 10\%$  of the conductivity standard, respectively (EPA New England- Region 1, 2005). The acceptable difference for DO will be  $\pm 0.2$  mg/L. If the measurements do not meet quality control goals, best professional judgment will be used to decide if any of the data collected during that period may still be accurate. For example, the data collected from the four locations may be plotted on the same graph, and if it appears that the data points are following similar trends, they may be considered accurate. If any data that do not meet quality control goals are used, a rationale for their inclusion will be provided when the data are submitted.

(9) Work Products

Within one year of completion of the project, fish data (species, numbers, weights, pollution tolerances, the incidence of DELT anomalies, IBI or LIBI, MIwb

scores), macroinvertebrate data (types and numbers of macroinvertebrates collected and ICI or LICI scores), habitat data (QHEI or L-QHEI raw data and scores) and water chemistry results will be submitted to the Ohio EPA or an Ohio EPA approved data warehouse. Additionally, reports summarizing, interpreting, graphically presenting and discussing the IBI (LIBI, where applicable), MIwb, ICI (LICI, where applicable) and QHEI (L-QHEI, where applicable) scores, chlorophyll *a* results, and any excursions from water quality standards may be prepared for internal use.

(10) Qualified Data Collectors

The following Level 3 Qualified Data Collectors (QDC) will be involved with this study:

| Name                              | Address                                                                   | Email Address                    | Phone Number | QDC Specialty(s)                    |  |  |  |  |  |
|-----------------------------------|---------------------------------------------------------------------------|----------------------------------|--------------|-------------------------------------|--|--|--|--|--|
| Seth Hothem <sup>1</sup>          | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125            | hothems@neorsd.org               | 216-641-6000 | QDC - 00010<br>CWQA/FCB/SHA/<br>BMB |  |  |  |  |  |
| Kelsey Amidon                     | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125            | kamidon@neorsd.org               | 216-641-6000 | QDC - 01091<br>CWQA                 |  |  |  |  |  |
| Donna Friedman                    | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125            | friedmand@neorsd.org             | 216-641-6000 | QDC – 01031<br>CWQA/SHA             |  |  |  |  |  |
| Jillian Knittle                   | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125            | knittlej@neorsd.org              | 216-641-6000 | QDC – 00512<br>CWQA/SHA/BMB         |  |  |  |  |  |
| Ron Maichle                       | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125            | maichler@neorsd.org              | 216-641-6000 | QDC - 00145<br>CWQA/SHA/BMB         |  |  |  |  |  |
| Mark Matteson                     | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125            | mattesonm@neorsd.org             | 216-641-6000 | QDC – 01031<br>CWQA/FCB/SHA         |  |  |  |  |  |
| John Rhoades                      | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125            | rhoadesj@neorsd.org              | 216-641-6000 | QDC - 00008<br>CWQA/FCB/SHA/<br>BMB |  |  |  |  |  |
| Francisco Rivera                  | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125            | riveraf@neorsd.org               | 216-641-6000 | QDC - 00262<br>CWQA/SHA             |  |  |  |  |  |
| Eric Soehnlen                     | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125            | soehnlene@neorsd.org             | 216-641-6000 | QDC – 01030<br>CWQA/SHA/BMB         |  |  |  |  |  |
| Cathy Zamborsky                   | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125            | zamborskyc@neorsd.org            | 216-641-6000 | QDC - 00009<br>CWQA/SHA             |  |  |  |  |  |
| Jonathan Brauer <sup>2</sup>      | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125            | brauerj@neorsd.org               | 216-641-6000 | QDC – 00663<br>SHA                  |  |  |  |  |  |
| Bert Remley <sup>3</sup>          | 2526 Regency Road, Suite 180<br>Lexington, Kentucky 40503                 | bremley@thirdrockconsultants.com | 859-977-2000 | QDC – 00837<br>BMB                  |  |  |  |  |  |
| <sup>1</sup> NEORSD Lead Proje    | ect Manager                                                               |                                  |              |                                     |  |  |  |  |  |
| <sup>2</sup> See acknowledgemen   | <sup>2</sup> See acknowledgement letter for conducting QHEIs (Appendix F) |                                  |              |                                     |  |  |  |  |  |
| <sup>3</sup> Benthic Macroinverte | ebrate Identification                                                     |                                  |              |                                     |  |  |  |  |  |

The following is a list of persons not qualified as Level 3 QDCs who may be involved in the project. Prior to the start of sampling, the project managers will explain to each individual the proper methods for sampling. Sampling will only be completed under the direct observation of a QDC. The lead project manager will be responsible for reviewing all reports and data analysis prepared by qualified personnel prior to completion.

| Name                    | Address                                                        | Email Address           | Phone<br>Number |
|-------------------------|----------------------------------------------------------------|-------------------------|-----------------|
| Kelsey Amidon           | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125 | amidonk@neorsd.org      | 216-641-6000    |
| Nick Barille            | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125 | barillen@neorsd.org     | 216-641-6000    |
| Mark Colvin             | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125 | colvinm@neorsd.org      | 216-641-6000    |
| Rae Grant               | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125 | grantr@neorsd.org       | 216-641-6000    |
| Mario Meany             | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125 | meanym@neorsd.org       | 216-641-6000    |
| Carrie Millward         | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125 | millwardc@neorsd.org    | 216-641-6000    |
| Denise Phillips         | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125 | phillipsd@neorsd.org    | 216-641-6000    |
| Brandy Reischman        | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125 | reischmanb@neorsd.org   | 216-641-6000    |
| Frank Schuschu          | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125 | schuschuf@neorsd.org    | 216-641-6000    |
| William Stanford        | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125 | standfordw@neorsd.org   | 216-641-6000    |
| Wolfram von<br>Kiparski | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125 | vonkiparskiw@neorsd.org | 216-641-6000    |
| Bryanna Boggan          | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125 | bogganb@neorsd.org      | 216-641-6000    |
| Joseph Schiel           | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125 | schielj@neorsd.org      | 216-641-6000    |
| WQIS Intern             | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125 | To Be Determined        | 216-641-6000    |
| WQIS Intern             | 4747 East 49 <sup>th</sup> Street<br>Cuyahoga Hts., Ohio 44125 | To Be Determined        | 216-641-6000    |

## (11) Contract laboratory contact information

All bacteriological and/or chemical sample analysis will be completed by NEORSD's Analytical Services Division. Evidence of NEORSD's Analytical Services current accreditation and method dates can be found in Appendix E. The contact information for NEORSD's Analytical Service Division is:

NEORSD Analytical Services Mr. Mark Citriglia 4747 E. 49th Street Cuyahoga Heights, Ohio 44056 citrigliam@neorsd.org 216-641-6000 Any fish that is not positively identified in the field, or at NEORSD, will be sent to The Ohio State University Museum of Biological Diversity for verification by the Curator and/or Associate Curator of Fish. Fish will be identified to the species level.

Dr. Ted Cavender, Curator of Fish / Mr. Marc Kibbey, Associate Curator of Fish 1315 Kinnear Road, Columbus, Ohio 43212 <u>cavender.1@osu.edu</u> / <u>kibbey.3@osu.edu</u> 614-292-7873

Identification of macroinvertebrates for stream locations will be completed by Third Rock Consultants LLC (Lexington, Kentucky)<sup>3</sup>. Benthic macroinvertebrates will be identified to the lowest practical level as recommended by Ohio EPA (1987b). Third Rock Consultants LLC contact information:

Ms. Marcia Wooton Third Rock Consultants LLC 2526 Regency Road, Suite 180 Lexington, Kentucky 40503 <u>mwooton@thirdrockconsultants.com</u> 859-977-2000

- (12) Copy of ODNR collector's permitSee Appendix G.
- (13) Digital Catalog Statement

A digital photo catalog of all sampling locations will be maintained for 10 years and will include photos of the specific sampling location(s), the riparian zone adjacent to the sampling location(s) and the general land use in the immediate vicinity of the sampling location(s).

Print/Signature: Seth Hothem / Sether Attacher Date: 4/7/16

(14) Voucher Specimen Statement

NEORSD will maintain a benthic macroinvertebrate and fish voucher collection which includes two specimens, or appropriate photo vouchers, of each species or taxa collected during the course of biological sampling from any stream within the NEORSD's service area. When benthic macroinvertebrates from multiple surface waters are collected within the same year and identified by the same QDC, one

<sup>&</sup>lt;sup>3</sup> A letter of acknowledgement of the macroinvertebrate identification responsibilities will be added as an addendum to this study plan, in Appendix F, upon finalization of the macroinvertebrate identification contract.

voucher collection will be created to represent the specimens collected from those streams. When fish specimens from multiple surface waters are collected within the same year, one voucher collection will be created to represent the specimens collected from those streams. A separate collection for each sampling event will not be maintained.

NEORSD will provide specimens or photo vouchers to the Director upon request. This collection will be stored at the NEORSD laboratory in the Environmental and Maintenance Services Center.

| Print/Signature: Seth H | othem/ Sec | Hola | Date: | 1/2/16 |  |
|-------------------------|------------|------|-------|--------|--|
|-------------------------|------------|------|-------|--------|--|

(15) Sample Location Statement

I attest that I will make available any and all sampling location information, including but not limited to; the name of the water body sampled, sampling location latitude and longitude, sampling location river mile where possible, general location information, the U.S. geological survey HUC 8 number and name, and the purpose for data collection at each sampling location.

| Print/Signature: | Seth Hothem/ | Sec m | Date: | 4 | 1-116 |  |
|------------------|--------------|-------|-------|---|-------|--|
|------------------|--------------|-------|-------|---|-------|--|

(16) Additional L3 Data Collector Statement

The Lead Project Manager for all stream locations is approved for all project data types.

| Hothem/ | Asta        | Date:             | 4/7/16                     |
|---------|-------------|-------------------|----------------------------|
|         | Hothem/ Ser | Hothem/ Som Hotom | Hothem/ Second Zatan Date: |

## PSP Guidelines 3-5 & 7-17 April 07, 2016

(17) Trespassing Statement

I have not been convicted or pleaded guilty to a Violation of section 2911.21 of the Revised Code (criminal trespass) or a substantially similar municipal ordinance within the previous five years.

| Print/Signature: | Seth Hothem/ Seth Hothe       | Date: <u>4/7/16</u>     |
|------------------|-------------------------------|-------------------------|
| Print/Signature: | Kelsey Amidon/ Kypey and      | Date: 4/7/10            |
| Print/Signature: | Donna Friedman/               | Date: 4716              |
| Print/Signature: | Jillian Knittle/ JUNK hilltl  | Date: 4/7/16            |
| Print/Signature: | Ron Maichle                   | Date: <u>194-117-16</u> |
| Print/Signature: | Mark Matteson                 | Date: 4/7/6             |
| Print/Signature: | John Rhoades And Much         | Date: 04/07/16          |
| Print/Signature: | Francisco Rivera/ Frain       | Date: 4/7/16            |
| Print/Signature: | Eric Soehnlen/                | Date: 04/07/16          |
| Print/Signature: | Cathy Zamborsky/ Catty Jaburg | Date: <u>4/7/16</u>     |
|                  | 000                           |                         |

Appendix A

| ChicERA    | FISH DAT<br>SHEET   |                  |                 | c ese only | (requires lat/long & cor | unty) Mix | Zone  |                       | Pa             | ge                              | of             |                        |
|------------|---------------------|------------------|-----------------|------------|--------------------------|-----------|-------|-----------------------|----------------|---------------------------------|----------------|------------------------|
| Station ID |                     | Riv              | er Code         |            | RM                       | Date      |       |                       | _Ti            | me_                             |                |                        |
| Stream     |                     |                  |                 |            | ——— Locatio              | n         |       |                       |                |                                 |                |                        |
| Comments — |                     |                  |                 |            |                          |           |       |                       |                |                                 |                |                        |
| Lat        | L                   | ong              |                 | County     |                          | ALP       |       | – Ti                  | me F           | lishe                           | d              |                        |
| Crew       |                     | Nette            | er              | Oth        | ers                      |           | Sam   | pler                  | Тур            | e                               |                |                        |
| Distance   | Flow                | Te               | mp. C           | Secchi     | Source                   | Project_  |       |                       |                |                                 |                |                        |
| Fins Code  | Number<br>Weighed C | Total<br>Counted | Total<br>Weight |            | Weights                  | ounts     | Defor | DE<br>mities<br>Multi | LT A<br>, Eros | <b>NON</b><br>ions, 1<br>ELTs o | IALI<br>Lesior | ES<br>1s, Tumo<br>fish |
|            |                     |                  |                 |            |                          |           | D     | E                     | L              | Т                               | М              | *                      |
|            |                     |                  |                 |            |                          |           | _     |                       |                |                                 |                |                        |
| V 102      | <u> </u>            |                  |                 |            |                          |           | D     | Е                     | L              | Т                               | М              | *                      |
|            |                     |                  |                 |            |                          |           |       |                       |                |                                 |                |                        |
| V 102      | ĸ                   |                  |                 |            |                          |           |       | -                     | -              |                                 |                |                        |
|            |                     |                  |                 |            |                          |           | D     | E                     | L              | Т                               |                | *                      |
| V 10       | 7                   |                  |                 |            |                          |           | _     |                       |                |                                 |                |                        |
| 102        |                     |                  |                 |            |                          |           | D     | Е                     | L              | Т                               | М              | *                      |
|            |                     |                  |                 |            |                          |           |       |                       |                |                                 |                |                        |
| V 102      | K                   |                  |                 |            |                          |           | D     | E                     | L              | Т                               | М              | *                      |
|            |                     |                  |                 |            |                          |           |       |                       |                |                                 |                |                        |
| V 102      | K                   |                  |                 |            |                          |           |       |                       |                |                                 |                |                        |
|            |                     |                  |                 |            |                          |           | D     | E                     | L              | Т                               | M              | *                      |
| V 10-      | 7                   |                  |                 |            |                          |           | _     |                       |                |                                 |                |                        |
| 102        |                     |                  |                 |            |                          |           | D     | Е                     | L              | Т                               | М              | *                      |
|            |                     |                  |                 |            |                          |           |       |                       |                |                                 |                |                        |
| V 102      | K I                 |                  |                 |            |                          |           | D     | E                     | L              | Т                               | M              | *                      |
|            |                     |                  |                 |            |                          |           |       |                       |                |                                 |                |                        |
| V 102      | K                   |                  |                 |            |                          |           |       |                       |                |                                 |                |                        |
|            |                     |                  |                 |            |                          |           | D     | E                     | L              | Т                               | М              | *                      |
| V          |                     |                  |                 |            |                          |           |       |                       |                |                                 |                |                        |
| v    103   | κ.                  |                  |                 |            |                          |           |       |                       |                |                                 |                |                        |

\* A-anchor worm; B-black spot; C-leeches; F-fungus; N-blind; P-parasites; S-emaciated, W-swirled scales Y-popeye; Z-other

EPA 4508 11/4/2005

|    | Fins Code | Number<br>Weighed | Total<br>Counted | Total<br>Weight | WeightsCoun | its |   | Ра | ige - |   | – of - |   |
|----|-----------|-------------------|------------------|-----------------|-------------|-----|---|----|-------|---|--------|---|
| 10 |           |                   |                  | weight          |             |     | D | Е  | L     | Т | М      | * |
|    |           |                   |                  |                 |             |     |   |    |       |   |        |   |
|    | N I       |                   |                  |                 |             |     |   |    |       |   |        |   |
|    | V 10x     |                   |                  |                 |             |     | D | E  | L     | Т | М      | * |
| 11 |           |                   |                  |                 |             |     |   |    | L     | 1 | IVI    |   |
|    |           |                   |                  |                 |             |     |   |    |       |   |        |   |
|    | V 10x     |                   |                  |                 |             |     |   |    |       |   |        |   |
| 12 |           |                   |                  |                 | <br>        |     | D | Е  | L     | Т | М      | * |
|    |           |                   |                  |                 |             |     |   |    |       |   |        |   |
|    | V 10x     |                   |                  |                 |             |     |   |    |       |   |        |   |
| 13 | IUA       |                   |                  |                 |             |     | D | E  | L     | Т | М      | * |
| 13 |           |                   | 1                |                 |             |     |   |    |       |   |        |   |
|    |           |                   |                  |                 |             |     |   |    |       |   |        |   |
|    | V 10x     |                   |                  |                 |             |     | D | E  | L     | Т | М      | * |
| 14 |           |                   |                  |                 |             |     |   | L  | L     | 1 | 111    |   |
|    |           |                   |                  |                 |             |     |   |    |       |   |        |   |
|    | V 10x     |                   |                  |                 |             |     |   |    |       |   |        |   |
| 15 |           |                   |                  |                 |             |     | D | Е  | L     | Т | М      | * |
| 15 |           |                   |                  |                 |             |     |   |    |       |   |        |   |
|    | V 10      |                   |                  |                 |             |     |   |    |       |   |        |   |
|    | v IUX     |                   |                  |                 |             |     | D | Е  | L     | Т | М      | * |
| 16 |           |                   |                  |                 |             |     |   |    |       |   |        |   |
|    |           |                   |                  |                 |             |     |   |    |       |   |        |   |
|    | V 10x     |                   |                  |                 |             |     |   |    |       |   |        |   |
| 17 |           |                   |                  |                 |             |     | D | E  | L     | Т | М      | * |
|    |           |                   |                  |                 |             |     |   |    |       |   |        |   |
|    | V 10x     |                   |                  |                 |             |     |   |    |       |   |        |   |
| 10 | 104       |                   |                  |                 |             |     | D | Е  | L     | Т | М      | * |
| 18 |           |                   | 1                |                 |             |     |   |    |       |   |        |   |
|    |           |                   |                  |                 |             |     |   |    |       |   |        |   |
|    | V 10x     | <u> </u>          |                  |                 |             |     | D | E  | L     | Т | М      | * |
| 19 |           |                   |                  |                 |             |     | - | -  | -     | - |        |   |
|    |           |                   |                  |                 |             |     |   |    |       |   |        |   |
|    | V 10x     |                   |                  |                 |             |     |   |    |       |   |        |   |
| 20 |           |                   |                  |                 |             |     | D | Е  | L     | Т | М      | * |
| 20 |           |                   | 1                |                 |             |     |   |    |       |   |        |   |
|    | V         |                   |                  |                 |             |     |   |    |       |   |        |   |
|    | v 10x     |                   |                  |                 |             |     | D | E  | L     | Т | М      | * |
| 21 |           |                   |                  |                 |             |     | - | -  | -     | - |        |   |
|    |           |                   |                  |                 |             |     |   |    |       |   |        |   |
|    | V 10x     | 1                 |                  |                 |             |     |   |    |       |   |        |   |

| Stream:           |                      |               |                | River Mile:  |              |              | Year:         |         |  |
|-------------------|----------------------|---------------|----------------|--------------|--------------|--------------|---------------|---------|--|
| Location:         |                      |               |                | Project:     |              |              |               |         |  |
| Drainage Area (n  | ni <sup>2</sup> ):   | Latitud       | e (°N)/Longitu | de (°W):     |              |              |               |         |  |
|                   |                      |               | Hester-Dend    | y Deployme   | nt Informat  | ion          |               |         |  |
| Install Date:     |                      |               |                | Crew (QDC    | Circled):    |              |               |         |  |
| Current at HD (fp | ps):                 |               | Depth (cr      | m):          |              | Pictures     | Obtained: Yes | s No    |  |
| Reinstall Date:   |                      |               |                | Crew (QDC    | Circled):    |              |               |         |  |
| Current (fps):    |                      | Depth (c      | cm):           |              | Reason:      |              |               |         |  |
| Reinstall Date:   |                      |               |                | Crew (QDC    | Circled):    |              |               |         |  |
| Current (fps):    |                      | Depth (c      | cm):           |              | Reason:      |              |               |         |  |
|                   |                      |               | Sampling       | /Retrieval I | nformation   |              |               |         |  |
| Sampling Method   | d:                   | Hester-Dend   | y Dipr         | net Sur      | rber C       | ore Oth      | ier:          |         |  |
| Sample ID:        | : HD:                | ·             | Qua            | alitative:   |              | Other        | :             |         |  |
| Sampling Date:    | _                    |               | Crev           | w (QDC Cire  | cled):       |              |               |         |  |
| ID Condition      | Cumont               | (frag).       | Dom            | th (am)      |              | Watan Tama   |               | ºE / ºC |  |
| HD Condition-     | Number               | (IPS).        | Dept           | (ciii).      | Por          | water Temp   | •             | r / c   |  |
|                   | Disturbe             | d ID Diock    |                | Comments:    |              |              |               |         |  |
|                   | Distuible<br>Debris: | A. Tes<br>Yes | No No          | Comments:    |              |              |               |         |  |
|                   | Silt/Soli            | ids: Noi      | ne Sligl       | nt Mo        | oderate      | Heavy        |               |         |  |
| Dipnet-           | Time Sa              | ampled (min): |                | X Number     | r of Crew:   | = To         | tal (min):    |         |  |
| 1                 | Habitats             | s Sampled:    | Pool Riffle    |              | Run          | Margin       | Backwater     |         |  |
|                   |                      |               | River S        | Sampling Co  | onditions    |              |               |         |  |
| Flow Condition:   |                      | Flood         | Above Norma    | al Normal    | Low          | Interstitial | Intermittent  | Dry     |  |
| Current Velocity. | ÷                    | Fast          | Moderate       | Slow         | Non-d        | etect        |               |         |  |
| Channel Morpho    | logy:                | Natural       | Channelized    | Channe       | lized (Recov | ered) Imp    | oounded       |         |  |
| Bank Erosion:     |                      | Extensive     | Moderate       | Slight       | None         |              |               |         |  |
| Riffle Developme  | ent:                 | Extensive     | Moderate       | Sparse       | Absen        | t            |               |         |  |
| Riffle Quality:   |                      | Good          | Fair           | Poor         |              | Embedded:    | Yes           | No      |  |
| Water Clarity:    |                      | Clear         | Murky          | Turbid       |              | Other:       |               |         |  |
| Water Color:      |                      | None          | Green          | Brown        | Grey         | Other:       |               |         |  |
| Canopy over HD    | :                    | Open          | 75 %           | 50 %         | 25 %         | Closed       |               |         |  |
| Comment Section   | on:                  |               |                |              |              |              |               |         |  |
|                   |                      |               |                |              |              |              |               |         |  |
|                   |                      |               |                |              |              |              |               |         |  |
|                   |                      |               |                |              |              |              |               |         |  |
| OEPA Commen       | t Field C            | odes:         |                |              |              |              |               |         |  |
| Samples Analyz    | ed By:               |               |                | QDC #        | :            | Date:        |               |         |  |

#### NEORSD Macroinvertebrate Field Sheet

| Substrate Characteristics     Predominant Land Use (Left, Right or Both)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                        |                | Phy   | sical Characteris | tics          |                     |                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|----------------|-------|-------------------|---------------|---------------------|--------------------------------------|
| Forest       Urban       Open Pasture         Bedrock       Shmab       Residential/Park       Closed Pasture         Bedrock       Image: Shmab       Residential/Park       Closed Pasture         Boulder       Image: Shmab       Residential/Park       Closed Pasture         Rubble       Image: Shmab       Closed Pasture       Closed Pasture         Coarse Gravel       Image: Shmab       Closed Pasture       Predominant Riparian Vegetation         Fine Gravel       Image: Shmab       Shmab       Left       Right       Type         Sand       Image: Shmab       Shmab       Shmab       Shmab       Shmab         Detritus       Image: Shmab       Shmab       Shmab       Shmab       Shmab         Margin Habitat       Margin Habitat       Margin Quality:       Good       Fair       Poor         Margin Quality:       Grass       Water Willow       Woody Debris       Shmab       ClasyHardpan       Macrophytes         Attifacts       Image: Shallows       ClasyHardpan       Macrophytes       Margin Quality:       Andmas: C - Commer, R - Rare         Other       Image: Shallows       ClasyHardpan       Macrophytes       Margin Habitat         Margin Habitat       Margin Habitat <t< td=""><td>Substrate (</td><td>Character</td><td>ristics</td><td></td><td>Predominant L</td><td>and Use (Left</td><td>, Right or Bot</td><td>h)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Substrate (              | Character              | ristics        |       | Predominant L     | and Use (Left | , Right or Bot      | h)                                   |
| Bit of the second se                                |                          | _                      | ۵<br>د         |       | Forest            | Urban         |                     | Open Pasture                         |
| Participant       Predominant Riparian Vegetation         Rubble       Industrial         Coarse Gravel       Predominant Riparian Vegetation         Fine Gravel       Industrial         Sand       Industrial         ClayHardpan       Industrial         Detritus       Industrial         Peter       Small Trees         ClayHardpan       Industrial         Detritus       Industrial         Margin Habitat       Grass/Weeds         Macrophytes       Industrial         Margin Habitat       Margin Quality:         Macrophytes       Industrial         Margin Rabitat       Grass/Weeds         Macrophytes       Industrial         Margin Quality:       Good         Compaction (F,M,S)       Industrial         Other       Margin Quality:         Other       Margin Rabitat         Macrophytes       Industrial         Margin Rap       Bulkhead         Other       Industrial         Density:       High         Moderate       Low         Density:       High         Moderate       Low         Predominant Organism:       Industrial         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | ool                    | s sun          | s     | Shrub             | Residential/  | Park                | Closed Pasture                       |
| Bedrock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | Unii                   | R Unit         | Uni   | Old Field         | Mining/Con    | struction           |                                      |
| Bouider       Industrial       Other         Rubble       Industrial       Other         Rubble       Industrial       Other         Sand       Industrial       Ither Right       Type         Sand       Industrial       Small Trees         Clay/Hardpan       Industrial       Small Trees         Detritus       Industrial       Grass/Weeds         Peat       Industrial       Margin Quality:       Good         Macrophytes       Industrial       Margin Quality:       Good       Fair       Poor         Attriacts       Industrial       Margin Quality:       Good       Fair       Poor         Attriacts       Industrial       Industrial       Macrophytes       Root Mats       Tree Roots         Compaction (F,M,S)       Industrial       Other       Very Asadam: C= Common: R= Rae       Very Asadam: C= Common: R= Rae         Predominant Organism:       Very Asadam: C= Common: R= Rae       Very Asadam: C= Common: R= Rae       Very Asadam: C= Common: R= Rae       Very Asadam: C= Common: R= Rae <td>Bedrock</td> <td></td> <td></td> <td></td> <td>Rowcrop</td> <td>Wetland</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bedrock                  |                        |                |       | Rowcrop           | Wetland       |                     |                                      |
| Rubble       Image: The Gravel       Predominant Riparian Vegetation         Fine Gravel       Image: Trees       Small Trees         Sand       Image: Trees       Small Trees         Silt       Image: Trees       Shrubs         Carse Gravel       Image: Trees       Shrubs         Silt       Image: Trees       Shrubs         Detritus       Image: Trees       Shrubs         Detritus       Image: Trees       Shrubs         Mack       Image: Trees       Shrubs         Other       Image: Trees       Shrubs         Algae       Image: Tree Roots       Good       Fair       Poor         Algae       Image: Tree Roots       Grass       Water Willow       Woody Debris         Compaction (F.M.S)       Image: Tree Roots       Shallows       Clay/Hardpan       Macrophytes         Petdominant Organism:       Image: Tree Roots       Shallows       Clay/Hardpan       Macrophytes         Other       Image: Tree Roots       Shallows       Clay/Hardpan       Macrophytes         Beilde:       Image: Tree Roots       Shallows       Clay/Hardpan       Macrophytes         Other Common Organisms:       Image: Tree Roots       Common Organisms:       Image: Tree Roots <td< td=""><td>Boulder</td><td></td><td></td><td>-</td><td>Industrial</td><td>Other</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Boulder                  |                        |                | -     | Industrial        | Other         |                     |                                      |
| Nonce       Predominant Riparian Vegetation         Fine Gravel       Image: Carase Gravel       Imagee: Carase Gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rubble                   |                        |                | -     |                   | o unor        |                     |                                      |
| Sind       Image: Construction of the second o                                         | Coarse Gravel            |                        |                | -     | Predominant R     | inarian Vecet | tation              |                                      |
| And Onter       Large Trees         Sind       Large Trees         Sit       Small Trees         Sit       Grass/Weeds         Peat       Grass/Weeds         Macrophytes       Margin Habitat         Macrophytes       Margin Quality:         Good Fair       Poor         Atridacts       Grass/Weeds         Compaction (F,M,S)       Shallows         Clay/Hardpan       Margin Quality:         Good Fair       Poor         Atridacts       Grass         Compaction (F,M,S)       Shallows         Clay/Hardpan       Macrophytes         Stiffe:       V= Very Abundust, A: Abundust, C: Common; R: Rare         Predominant Organisms:       Other         Diversity:       High       Moderate         Density:       High       Moderate         Diversity:       High       Moderate         Density:       High       Moderate       Low <td>Fine Gravel</td> <td></td> <td></td> <td>-</td> <td>I eft</td> <td>Right</td> <td>Type</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fine Gravel              |                        |                | -     | I eft             | Right         | Type                |                                      |
| Silt       Silt       Single Frees         Clay/Hardpan       Shrubs         Detritus       Grass/Weeds         Peat       Grass/Weeds         Muck       Margin Habitat         Macrophytes       Good Fair Poor         Algae       Undercut Banks         Artifacts       Grass         Compaction (F,M,S)       Shallows         Depth (Avg)       Shallows         Width (Avg)       Very Alundaut; A=Abudaut; C=Common; R= Rate         Overall Amount       (V=151; A= 10:0)         Other Common Organisms:       Versty Alundaut; A=Abudaut; C= Common; R= Rate         Overall Amount       (V=151; A= 10:0)         Other Common Organisms:       Versty Alundaut; A=Abudaut; C= Common; R= Rate         Organism:       Versty Alundaut; A=Abudaut; C= Common; R= Rate         Other Common Organisms:       Versty Alundaut; A=Abudaut; C= 10:0; I; R= 10:0;         Density:       High<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sand                     |                        |                | -     | Len               | Right         | Large Tr            | 200                                  |
| Sinta Hicks       Sinta Hicks         Clay/Hardpan       Sinta Hicks         Detritus       Grass/Weeds         Peat       None         Muck       Margin Habitat         Macrophytes       Margin Quality:         Algae       Margin Quality:         Algae       Margin Quality:         Algae       Margin Habitat         Macrophytes       Good         Algae       Grass         Algae       Grass         Compaction (F,M,S)       Good         Depth (Avg)       Other         Biological Characteristics         Riffle:       V= Very Abudant: A= Abundant: C= Common; R= Rate         Overall Amount       (V=>151; A= 150-101; C= 100-11; R= 10-1)         Other       Other         Density:       High         Moderate       Low         Diversity:       High         Moderate <t< td=""><td>Silt</td><td></td><td></td><td>-</td><td></td><td></td><td>Small Tr</td><td>2005</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Silt                     |                        |                | -     |                   |               | Small Tr            | 2005                                 |
| Chay marginal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Clay/Hardnan             |                        |                | -     |                   |               | Shrubs              |                                      |
| Definitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Clay/Halupan<br>Detritus |                        |                | -     |                   |               | Cross (W            | anda                                 |
| Pread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Detritus                 |                        |                | -     |                   |               | Grass/ w            | eeds                                 |
| Muck Other Cher Margin Habitat Margin Habitat Margin Habitat Margin Quality: Good Fair Poor Algae Undercut Banks Root Mats Tree Roots Tree Roots Cay/Hardpan Macrophytes Clay/Hardpan Macrophytes Depth (Avg) Biological Characteristics Riffle: V= Very Abundant; A= Abundant; C= Common; R= Rare Predominant Organisms: Density: High Moderate Low V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; C= Common; R= Rare V= Very Abundant; A= Abundant; A= Abundant; A= Abundant | Peat                     |                        |                | -     |                   |               | None                |                                      |
| Other       Margin Habitat         Macrophytes       Margin Quality:       Good       Fair       Poor         Algae       Undercut Banks       Root Mats       Tree Roots         Artifacts       Grass       Water Willow       Woody Debris         Compaction (F,M,S)       Shallows       Clay/Hardpan       Macrophytes         Depth (Avg)       Biological Characteristics       Rip Rap       Bulkhead         Width (Avg)       Width (Avg)       V= Very Abundant; A= Abundant; C= Common; R= Rare         Predominant Organisms:       V= Very Abundant; A= Abundant; C= Common; R= Rare         Overall Amount       (V=315; A= 189-101; C= 100-11; R= 10-1)         Other Common Organisms:       Other         Density:       High       Moderate       Low         //       Perdominant Organisms:       //       Perdopriera         Pardominant Organisms:       //       Decapoda, Hydracarina         Run:       Predominant Organisms:       //       Heptagenidae, Leptohyphidae, Caenidae         Density:       High       Moderate       Low       //       Zygoptera, Anisoptera         Piecoptera       Plecoptera       Hemiptera       Hemiptera       Hydropsychidae         Other       Other       Hydropsychidae </td <td>Muck</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Muck                     |                        |                | _     |                   |               |                     |                                      |
| Macrophytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Other                    |                        |                | _     | Margin Habita     | t<br>~ .      |                     | _                                    |
| Algae       Image: Grass       Water Willow       Woody Debris         Artifacts       Grass       Water Willow       Woody Debris         Compaction (F,M,S)       Rip Rap       Bulkhead       Macrophytes         Depth (Avg)       Rip Rap       Bulkhead       Macrophytes         Width (Avg)       Biological Characteristics       V= Very Abundant; A= Abundant; C= Common; R= Rare         Predominant Organisms:       V= Very Abundant; A= Abundant; C= 100-11; R= 10-1)       //         Other Common Organisms:       V= Very Abundant; A= Abundant; C= 100-11; R= 10-1)       //         Other Common Organisms:       V= Very Abundant; A= Abundant; C= 100-11; R= 10-1)       //         Predominant Organisms:       V= Very Abundant; A= Abundant; C= 100-11; R= 10-1)       //         Other Common Organisms:       V= Very Abundant; A= Abundant; C= 100-11; R= 10-1)       //         Run:       Predominant Organisms:       V= Very Abundant; A= Abundant; A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Macrophytes              |                        |                | _     | Margin Quality:   | Good          | Fair                | Poor                                 |
| Artifacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Algae                    |                        |                | _     | Undercut Ba       | anks Ro       | ot Mats             | Tree Roots                           |
| Compaction (F,M,S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Artifacts                |                        |                | _     | Grass             | Wa            | ater Willow         | Woody Debris                         |
| Depth (Avg)       Rip Rap Other       Bulkhead         Width (Avg)       Image: Common Common Common Relation of the Common Organisms:       V= Very Abundant; C= Common; R= Rare         Predominant Organism:       V= Very Abundant; C= Common; R= Rare         Other Common Organisms:       V= Very Abundant; C= Common; R= Rare         Density:       High       Moderate       Low         Diversity:       High       Moderate       Low         Predominant Organisms:       /       Porifera, Bryozoa         Predominant Organisms:       /       Porifera, Bryozoa         Predominant Organisms:       /       Pocapoda, Amphipoda         Density:       High       Moderate       Low         Predominant Organisms:       //       Ephemeroptera         Density:       High       Moderate       Low         Diversity:       High       Moderate       Low         Predominant Organisms:       //       Zygoptera, Anisoptera         Plecoptera       Plecoptera         Baetidae       Noderate       Low         Vieter Common Organisms:       //       Megaloptera, Neuroptera         Density:       High       Moderate       Low         Margin:       Predominant Organisms:       Coleoptera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Compaction (F,M,S)       |                        |                |       | Shallows          | Cla           | ay/Hardpan          | Macrophytes                          |
| Width (Avg)       Other         Biological Characteristics         Riffle:       V= Very Abundant; A= Abundant; C= Common; R= Rare         Predominant Organism:       Overall Amount       (V=>151; A= 150-101; C= 100-11; R= 10-1)         Other Common Organisms:       //       Porifera, Bryozoa         Density:       High       Moderate       Low         Diversity:       High       Moderate       Low         Predominant Organism:       //       Isopoda, Amphipoda         Other Common Organisms:       Ephemeroptera         Predominant Organisms:       Baetidae         Other Common Organisms:       ///         Density:       High       Moderate       Low         Predominant Organisms:       ///       Baetidae         Other Common Organisms:       ////       Heptageniidae, Leptohyphidae, Caenidae         Density:       High       Moderate       Low         Pool:       ////       Zygoptera, Anisoptera         Precoptera       Hemiptera         Margin:       ///       Hydropytildae, Leptoceridae         Other Common Organisms:       ////       Hydropytildae, Leptoceridae         Other Common Organisms:       /////       Hydropytidae         Diversi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Depth (Avg)              |                        |                |       | Rip Rap           | Bu            | lkhead              |                                      |
| Biological Characteristics         Riffle:       V= Very Abundant; A= Abundant; C= Common; R= Rare         Predominant Organisms:       Overall Amount       (V=>151; A= 150-101; C= 100-11; R= 10-1)         Other Common Organisms:       /       Porifera, Bryozoa         Density:       High       Moderate       Low       //       Turbellaria, Oligochaeta, Hirudinea         Run:       /       Isopoda, Amphipoda       //       Decapoda, Hydracarina         Run:       Predominant Organism:       //       Baetidae         Other Common Organisms:       //       Heptagenidae, Leptohyphidae, Caenidae         Other Common Organisms:       //       Zygoptera, Anisoptera         Pool:       Predominant Organism:       //       Moderate       Low         Polo:       Predominant Organism:       //       Megaloptera, Neuroptera         Pool:       Predominant Organism:       //       Megaloptera, Neuroptera         Pool:       Predominant Organism:       //       Heptagenidae, Leptoceridae         Other Common Organisms:       //       Heptagenidae, Leptoceridae       Other         Density:       High       Moderate       Low       //       Hydropsychidae         Diversity:       High       Moderate <t< td=""><td>Width (Avg)</td><td></td><td></td><td></td><td>Other</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Width (Avg)              |                        |                |       | Other             |               |                     |                                      |
| Biological Characteristics         Riffle:       V= Very Abundant; A= Abundant; C= Common; R= Rare         Predominant Organisms:       Overall Amount         Density:       High       Moderate       Low         Diversity:       High       Moderate       Low         Diversity:       High       Moderate       Low         Predominant Organism:       //       J       Porifera, Bryozoa         Run:       Isopoda, Amphipoda       //       Decapoda, Hydracarina         Run:       Ephemeroptera       Baetidae         Other Common Organisms:       //       Heptagenidae, Leptohyphidae, Caenidae         Other Common Organisms:       //       Keptera         Density:       High       Moderate       Low         Diversity:       High       Moderate       Low         Predominant Organisms:       //       Zygoptera, Anisoptera         Pool:       //       Zygoptera, Neuroptera         Predominant Organisms:       //       Megaloptera, Neuroptera         Other Common Organisms:       //       Megaloptera, Neuroptera         Ponsity:       High       Moderate       Low         Margin:       //       Hydropsychidae         Predomin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                        |                |       |                   |               |                     |                                      |
| Riffle:       V= Very Abundant; A= Abundant; C= Common; R= Rare         Predominant Organisms:       Overall Amount       (V=>151; A= 150-101; C= 100-11; R= 10-1)         Other Common Organisms:       /       Porifera, Bryozoa         Density:       High       Moderate       Low         Diversity:       High       Moderate       Low         Predominant Organisms:       /       Porifera, Bryozoa         Run:       Predominant Organisms:       /       Decapoda, Hydracarina         Other Common Organisms:       Baetidae       Decapoda, Hydracarina       Ephemeroptera         Baetidae       /       Heptageniidae, Leptohyphidae, Caenidae       Other         Other Common Organisms:       /       /       Heptageniidae, Caenidae         Predominant Organisms:       /       /       Heptageniidae, Leptohyphidae, Caenidae         Pool:       /       /       Zygoptera, Anisoptera       Plecoptera         Pool:       /       /       Megaloptera, Neuroptera       Trichoptera         Other Common Organisms:       //       Hydropsychidae       //       Hydropsychidae         Diversity:       High       Moderate       Low       //       Hydropsychidae       //         Margin:       Predominant Organi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                        |                | Biolo | ogical Characteri | stics         |                     |                                      |
| Predominant Organism:       Overall Amount       (V=>151; A= 150-101; C= 100-11; R= 10-1)         Other Common Organisms:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Riffle:                  |                        |                |       |                   | V= Very A     | Abundant; A= Abunda | ant; C= Common; R= Rare              |
| Other Common Organisms:       //       Porifera, Bryozoa         Density:       High       Moderate       Low         Diversity:       High       Moderate       Low         Run:       -       -//       Isopoda, Amphipoda         Predominant Organism:       -//       Decapoda, Hydracarina         Other Common Organisms:       -//       Baetidae         Other Common Organisms:       -//       Heptageniidae, Leptohyphidae, Caenidae         Other Common Organisms:       -//       Heptageniidae, Leptohyphidae, Caenidae         Diversity:       High       Moderate       Low       -//       Zygoptera, Anisoptera         Pool:       -//       Predominant Organisms:       -//       Plecoptera         Density:       High       Moderate       Low       -//       Megaloptera, Neuroptera         Margin:       -//       -//       Hydrosychidae       -//       Hydrosychidae         Margin:       -//       Predominant Organisms:       -///       -//       Hydrosychidae         Margin:       -//       Predominant Organisms:       -///       -//       Hydrosychidae         Margin:       -//       Predominant Organisms:       -///       -//       -//       -//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Predominant Org          | ganism:                |                |       |                   | Overall Amo   | ount (V=>1          | 151; A= 150-101; C= 100-11; R= 10-1) |
| Density:HighModerateLow/ /Turbellaria, Oligochaeta, HirudineaDiversity:HighModerateLow/Isopoda, AmphipodaRun:Predominant Organism:/Decapoda, HydracarinaOther Common Organisms:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Other Common             | Organism               | s:             |       |                   | /             | Porifera, Bryoz     | zoa                                  |
| Diversity:       High       Moderate       Low       /       Isopoda, Amphipoda         Run:       Predominant Organism:       Decapoda, Hydracarina       Ephemeroptera         Other Common Organisms:       Moderate       Low       /       Heptageniidae, Leptohyphidae, Caenidae         Diversity:       High       Moderate       Low       /       Zygoptera, Anisoptera         Pool:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Density:                 | High                   | Moderate       | Low   | /                 | / /           | Turbellaria, Ol     | igochaeta, Hirudinea                 |
| Run:       /       Decapoda, Hydracarina         Predominant Organisms:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Diversity:               | High                   | Moderate       | Low   | /                 | /             | Isopoda, Amph       | nipoda                               |
| Run:       Ephemeroptera         Predominant Organisms:       Image: Control of                                                                            |                          | •                      |                |       |                   | /             | Decapoda, Hyd       | Iracarina                            |
| Predominant Organism:       Image: Construction of the common Organisms:       Image: Construction of the common Organisms:         Density:       High       Moderate       Low       Image: Construction of the common Organism:         Diversity:       High       Moderate       Low       Image: Construction of the common Organism:         Pool:       Image: Construction of the common Organisms:       Image: Construction of the common Organisms:       Image: Construction of the common Organism:         Other Common Organism:       Image: Construction of the common Organism:       Image: Colleoptera         Margin:       Image: Colleoptera       Plecoptera         Predominant Organism:       Image: Colleoptera       Image: Colleoptera         Margin:       Image: Colleoptera       Image: Colleoptera         Predominant Organism:       Image: Colleoptera       Image: Colleoptera         Other Common Organisms:       Image: Colleoptera       Image: Colleoptera         Other Common Organisms:       Image: Colleoptera       Image: Colleoptera         Density:       High       Moderate       Low       Image: Colleoptera         Density:       High       Moderate       Low       Image: Colleoptera         Density:       High       Moderate       Low       Image: Colleoptera         Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Run:                     |                        |                |       |                   |               | Ephemeroptera       | l                                    |
| Other Common Organisms:       / /       Heptageniidae, Leptohyphidae, Caenidae         Density:       High       Moderate       Low       //       Zygoptera, Anisoptera         Dool:       /       Zygoptera, Anisoptera       Plecoptera         Pool:       //       Megaloptera, Neuroptera         Other Common Organisms:       //       Megaloptera, Neuroptera         Other Common Organisms:       //       Megaloptera, Neuroptera         Other Common Organisms:       //       Hydropsychidae         Density:       High       Moderate       Low         Diversity:       High       Moderate       Low         Margin:       //       Hydropsychidae       Other         Predominant Organism:       //       Coleoptera       Elimidae         Other Common Organisms:       //       Dother       Other         Margin:       //       Predominant Organism:       Coleoptera       Elimidae         Other Common Organisms:       //       Other       Diptera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Predominant Or           | ganism:                |                |       |                   |               | Baetidae            |                                      |
| Density:       High       Moderate       Low       Other         Diversity:       High       Moderate       Low       /       Zygoptera, Anisoptera         Pool:       /       Plecoptera       Plecoptera         Pool:       /       Megaloptera, Neuroptera       Plecoptera         Other Common Organisms:       //       Megaloptera, Neuroptera       Trichoptera         Density:       High       Moderate       Low       //       Hydropsychidae         Diversity:       High       Moderate       Low       //       Hydropsychidae         Margin:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Other Common             | Organism               | s:             |       |                   |               | Heptagenii          | dae Leptohyphidae Caenidae           |
| Diversity:       High       Moderate       Low       /       Zygoptera, Anisoptera         Pool:       /       Plecoptera         Predominant Organisms:       /       Megaloptera, Neuroptera         Other Common Organisms:       /       Megaloptera, Neuroptera         Diversity:       High       Moderate       Low         Diversity:       High       Moderate       Low         Diversity:       High       Moderate       Low         Margin:       /       Collect       High         Predominant Organisms:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Density.                 | High                   | Moderate       | Low   | 1                 |               | Other               | , <sub>F</sub> , <sub>F</sub> ,      |
| Diversity:       High       Moderate       Low       //       Digoptera, Hilspiela         Pool:       Predominant Organism:       //       Megaloptera, Neuroptera         Other Common Organisms:       //       Megaloptera, Neuroptera         Density:       High       Moderate       Low         Diversity:       High       Moderate       Low         Margin:       //       Coleoptera         Predominant Organisms:       Coleoptera         Diversity:       High       Moderate         Margin:       Coleoptera         Predominant Organisms:       Coleoptera         Diversity:       High       Moderate         Diversity:       High       Moderate         Diptera       Diptera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Diversity:               | High                   | Moderate       | Low   | 7                 | /             | Zvgontera Ani       | sontera                              |
| Pool:<br>Predominant Organism:<br>Other Common Organisms:<br>Density: High Moderate Low<br>Diversity: High Moderate Low<br>Margin:<br>Predominant Organism:<br>Other Common Organisms:<br>Predominant Organism:<br>Other Common Organisms:<br>Density: High Moderate Low<br>Diversity: High Moderate Low<br>Diversity: High Moderate Low<br>Diversity: High Moderate Low<br>Density: High Moderate Low<br>Diversity: High Moderate Low<br>Density: High Moderate Low<br>Diversity: High Moderate Low<br>Diversity: High Moderate Low<br>Diptera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Diversity.               | mgn                    | moderate       | Low   |                   | /             | Plecontera          | sopteru                              |
| Predominant Organism:       /       Megaloptera, Neuroptera         Other Common Organisms:       /       Megaloptera, Neuroptera         Density:       High       Moderate       Low         Diversity:       High       Moderate       Low         Margin:       Coleoptera         Predominant Organisms:       Coleoptera         Other Common Organisms:       Elimidae         Other Common Organisms:       Other         Density:       High       Moderate       Low         Density:       High       Moderate       Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pool                     |                        |                |       |                   |               | Hemintera           |                                      |
| Other Common Organisms:       7       Megadoptera         Density:       High       Moderate       Low         Diversity:       High       Moderate       Low         Margin:       Coleoptera       Other         Predominant Organisms:       Coleoptera         Other Common Organisms:       Coleoptera         Density:       High       Moderate       Low         Margin:       Coleoptera       Elimidae         Other Common Organisms:       Other       Other         Density:       High       Moderate       Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Prodominant Or           | oniem:                 |                |       |                   | /             | Magaloptara N       | Iouroptoro                           |
| Density:       High       Moderate       Low       Hydropsychidae         Diversity:       High       Moderate       Low       /       Hydropsychidae         Margin:       Coleoptera       Other       Other       Elimidae         Other Common Organisms:       Other       Other       Diptera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Other Common             | gailisili.<br>Organiam |                |       |                   | /             | Trichontono         | veuropiera                           |
| Density:     High     Moderate     Low     /     Hydropsychidae       Diversity:     High     Moderate     Low     /     Hydropsychidae       Margin:     Coleoptera     Other     Coleoptera       Predominant Organism:     Coleoptera     Elimidae       Other Common Organisms:     Other     Other       Density:     High     Moderate     Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Danaitan                 |                        | S:<br>Madausta | T     |                   |               |                     | 1 . 1                                |
| Diversity: High Moderate Low / Hydropthidae, Leptoceridae<br>Margin:<br>Predominant Organism:<br>Other Common Organisms:<br>Density: High Moderate Low Diptera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Density:                 | High                   | Moderate       | LOW   | /                 |               | - Hydropsy          | chidae                               |
| Margin:     Coleoptera       Predominant Organisms:     Elimidae       Other Common Organisms:     Other       Density:     High     Moderate     Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Diversity:               | High                   | Moderate       | Low   | /                 | /             | Hydroptil           | idae, Leptoceridae                   |
| Margin:     Coleoptera       Predominant Organism:     Elimidae       Other Common Organisms:     Other       Density:     High     Moderate     Low   Diptera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                        |                |       |                   |               | Other               |                                      |
| Predominant Organism:     Elimidae       Other Common Organisms:     Other       Density:     High     Moderate     Low       Diptera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Margin:                  |                        |                |       |                   |               | Coleoptera          |                                      |
| Other Common Organisms:     Other       Density:     High     Moderate     Low   Diptera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Predominant Org          | ganism:                |                |       |                   |               | Elimidae            |                                      |
| Density: High Moderate Low Diptera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Other Common             | Organism               | s:             |       |                   | _             | Other               |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Density:                 | High                   | Moderate       | Low   | /                 |               | Diptera             |                                      |
| Diversity: High Moderate Low Chironomidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Diversity:               | High                   | Moderate       | Low   | /                 |               | Chironom            | nidae                                |
| Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                        |                |       |                   |               | Other               |                                      |
| Other Notable Collections: / Gastropoda, Bivalvia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Other Notable Collec     | ctions:                |                |       |                   | /             | Gastropoda, Bi      | ivalvia                              |
| Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                        |                |       |                   |               | Other               |                                      |

Field Narrative Rating: E VG G MG F P VP



Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

| <b>ChicEPA</b>                                                                                                                                                                                                                                       | Qualitative Habita<br>and Use Assessi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | at Evaluation Inde<br>ment Field Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X QHEI Scol                                                                                                                                     | re:                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Stream & Location:                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 | <u> </u>                                                                                                       |
|                                                                                                                                                                                                                                                      | Scorers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s Full Name & Affiliation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7. Northeast Ohio Regional                                                                                                                      | Sewer District                                                                                                 |
| <i>River Code:</i>                                                                                                                                                                                                                                   | _ <u>STORET#;</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (NAD 83 - decimal °)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /8                                                                                                                                              | location                                                                                                       |
| BEST TYPES POOL RIFFLI<br>BLDR /SLABS [10]<br>BOULDER [9]<br>COBBLE [8]<br>GRAVEL [7]<br>BEDROCK [5]<br>NUMBER OF BEST TYPES:<br>Comments                                                                                                            | OTHER TYPES     POOL     OTHER     POOL     OTHER      OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER     OTHER | Check ORIGIN UIMESTONE [1] UIMESTONE [1] UIMESTONE [1] UIMESTONE [1] UIMESTONE [1] UIMESTONE [0] UIMETLANDS [0] UIMES; ignore RIP/RAP [0] UIMES; ignore UIMESUTURINE [0] UIMESUTURINE [0] UIMESUTURINE [1] UIMESUT | ONE (Or 2 & average)<br>QUA<br>HEAVY<br>SILT MODER<br>FREE [<br>BODED<br>EXTENS<br>MODER<br>MODER                                               | LITY<br>[-2]<br>SATE [-1]<br>SIVE [-2]<br>SIVE [-2]<br>AL [0]<br>AL [0]<br>Maximum<br>20                       |
| 2] ///STREAM COVER Indicate pro-<br>quality; 2-M<br>quality; 3-Highest quality in moderate of<br>diameter log that is stable, well develop<br>UNDERCUT BANKS [1]<br>OVERHANGING VEGETATION [<br>SHALLOWS (IN SLOW WATER)<br>ROOTMATS [1]<br>Comments | esence 0 to 3: 0-Absent; 1-Very<br>Moderate amounts, but not of hig<br>greater amounts (e.g., very lar<br>ed rootwad in deep / fast water,<br>POOLS > 70cm [2]<br>[1] ROOTWADS [1]<br>[1] BOULDERS [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e small amounts or if more comm<br>ghest quality or in small amount<br>ge boulders in deep or fast wate<br>or deep, well-defined, functiona<br>OXBOWS, BACKWAT<br>AQUATIC MACROPH<br>LOGS OR WOODY DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AMC<br>ts of highest<br>er, large<br>al pools.<br>ERS [1]<br>YTES [1]<br>BRIS [1]<br>Check ONE (<br>EXTENSIV<br>MODERAT<br>SPARSE 5<br>BRIS [1] | DUNT<br>Or 2 & average)<br>E >75% [11]<br>E 25-75% [7]<br>-<25% [3]<br>BSENT <5% [1]<br>Cover<br>Maximum<br>20 |
| 3] CHANNEL MORPHOLOGY CI         SINUOSITY       DEVELOPMEN         HIGH [4]       EXCELLENT [         MODERATE [3]       GOOD [5]         LOW [2]       FAIR [3]         NONE [1]       POOR [1]         Comments       FAIR [3]                    | Anteck ONE in each category ( <i>Or</i><br><b>IT</b> CHANNELIZATIO<br>[7] NONE [6]<br>[8] RECOVERED [4]<br>[9] RECOVERING [3]<br>[9] RECENT OR NO REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 & average)<br>DN STABILITY<br>  HIGH [3]<br>  MODERATE [2<br>  LOW [1]<br>OVERY [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2]                                                                                                                                              | Channel<br>Maximum                                                                                             |
| 4] BANK EROSION AND RIPAN<br>River right looking downstream<br>EROSION<br>NONE / LITTLE [3]<br>MODERATE [2]<br>HEAVY / SEVERE [1]<br>Comments                                                                                                        | RIAN ZONE Check ONE in e         ARIAN WIDTH         > 50m [4]         E > 50m [4]         ERATE 10-50m [3]         ROW 5-10m [2]         Y NARROW < 5m [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ach category for <i>EACH BANK</i> (<br><b>FLOOD PLAIN QUAL</b><br>DREST, SWAMP [3]<br>HRUB OR OLD FIELD [2]<br>ESIDENTIAL, PARK, NEW FIEL<br>ENCED PASTURE [1]<br>PEN PASTURE, ROWCROP [0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Or 2 per bank & average) ITY I CONSERVATI O URBAN OR IN I URBAN OR IN Indicate predominant past 100m riparian.                                  | ON TILLAGE [1]<br>NDUSTRIAL [0]<br>ISTRUCTION [0]<br>Iand use(s)<br>Riparian<br>Maximum<br>10                  |
| 5] <i>POOL / GLIDE AND RIFFLE .</i><br>MAXIMUM DEPTH CH<br>Check ONE ( <i>ONLY</i> !) Check                                                                                                                                                          | / RUN QUALITY<br>ANNEL WIDTH<br>ONE (Or 2 & average)<br>DTH > RIFFLE WIDTH [2]<br>DTH = RIFFLE WIDTH [1]<br>DTH < RIFFLE WIDTH [0]<br>U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CURRENT VELOCIT<br>Check ALL that apply<br>TORRENTIAL [-1] SLOW [1<br>VERY FAST [1] INTERST<br>FAST [1] INTERMI<br>MODERATE [1] EDDIES<br>Indicate for reach - pools and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Y<br>Primary<br>Primary<br>Seconda<br>(circle one and<br>riffles.                                                                               | Pool /<br>Pool /<br>Pool /<br>Current<br>Maximum<br>12                                                         |
| Indicate for functional riffle<br>of riffle-obligate species:<br>RIFFLE DEPTH RUN<br>BEST AREAS > 10cm [2] MAXIM<br>BEST AREAS 5-10cm [1] MAXIM<br>BEST AREAS < 5cm<br>[metric=0]<br>Comments                                                        | ES; Best areas must be I<br>Check ONE (<br>I DEPTH RIFFLE /<br>UM > 50cm [2] STABLE (e.<br>UM < 50cm [1] MOD. STABLE<br>UNSTABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | arge enough to support<br>Or 2 & average).<br>RUN SUBSTRATE RIF<br>.g., Cobble, Boulder) [2]<br>BLE (e.g., Large Gravel) [1]<br>E (e.g., Fine Gravel, Sand) [0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t a population<br>FFLE / RUN EMBEDE<br>NONE [2]<br>LOW [1]<br>MODERATE [0]<br>EXTENSIVE [-1]                                                    | 0       RIFFLE [metric=0]         0       EDNESS         1       Riffle Run Maximum 8                          |
| 6] <i>GRADIENT</i> (ft/mi)<br>DRAINAGE AREA<br>(mi <sup>2</sup> )                                                                                                                                                                                    | /ERY LOW - LOW [2-4]<br>MODERATE [6-10]<br>HIGH - VERY HIGH [10-6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %POOL:<br>%RUN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) %GLIDE:<br>)%RIFFLE:                                                                                                                          | Gradient<br>Maximum<br>10                                                                                      |

| A SAMPL                                                                                                                | <i>ED REACH</i><br>ALL that apply                                                                              | Comment RE: Reach consistency/                                                                                                     | s reach typical of steam?, Recreation                                                                                                                                                                                                 | n/ Observed - Inferred, Other | /Sampling observations, Concerns, Acco                                                                                                                                                                                                                            | ess directions, etc.                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| METHOD<br>BOAT<br>WADE<br>L. LINE<br>OTHER<br>DISTANCE                                                                 | STAGE           1st -sample pass- 2nd           HIGH           UP           NORMAL           LOW           DRY |                                                                                                                                    |                                                                                                                                                                                                                                       |                               |                                                                                                                                                                                                                                                                   |                                                                                                                                            |
| □ 0.5 Km<br>□ 0.2 Km<br>□ 0.15 Km<br>□ 0.12 Km<br>□ 0THER<br>••••••••••••••••••••••••••••••••••••                      | CLARITY         1stsample pass 2nd         < 20 cm                                                             | BJAESTHETICS NUISANCE ALGAE INVASIVE MACROPHYTES EXCESS TURBIDITY DISCOLORATION FOAM / SCUM OIL SHEEN TRASH / LITTER NUISANCE ODOR | D] MAINTENANCE<br>PUBLIC / PRIVATE / BOTH / NA<br>ACTIVE / HISTORIC / BOTH / NA<br>YOUNG-SUCCESSION-OLD<br>SPRAY / SNAG / REMOVED<br>MODIFIED / DIPPED OUT / NA<br>LEVEED / ONE SIDED<br>RELOCATED / CUTOFFS<br>MOVING-BEDLOAD-STABLE | Circle some & COMMENT         | E] ISSUES<br>WWTP / CSO / NPDES / INDUSTRY<br>HARDENED / URBAN / DIRT&GRIME<br>CONTAMINATED / LANDFILL<br>BMPs-CONSTRUCTION-SEDIMENT<br>LOGGING / IRRIGATION / COOLING<br>BANK / EROSION / SURFACE<br>FALSE BANK / MANURE / LAGOON<br>WASH H20 / TILE / H20 TABLE | <i>F] MEASUREMENTS</i><br>x̄ width<br>x̄ depth<br>max. depth<br>x̄ bankfull width<br>bankfull x̄ depth<br>W/D ratio<br>bankfull max. depth |
| <ul> <li>&gt; 85%- OPI</li> <li>55%-&lt;85%</li> <li>30%-&lt;55%</li> <li>10%-&lt;30%</li> <li>&lt;10%- CLO</li> </ul> | EN 2nd cm<br>CJ RECRE                                                                                          | SLUDGE DEPOSITS         CSOs/SSOs/OUTFALLS         CATION         AREA         DOCL:         >100ft <sup>2</sup> >3ft              | ARMOURED / SLUMPS<br>ISLANDS / SCOURED<br>IMPOUNDED / DESICCATED<br>FLOOD CONTROL / DRAINAGE                                                                                                                                          |                               | ACID / MINE / QUARRY / FLOW<br>NATURAL / WETLAND / STAGNANT<br>PARK / GOLF / LAWN / HOME<br>ATMOSPHERE / DATA PAUCITY                                                                                                                                             | floodprone x <sup>2</sup> width<br>entrench. ratio<br><i>Legacy Tree:</i>                                                                  |

Stream Drawing:

| Oh                | <b>EPA</b> Primary                                                   | / Headwater             | Habitat E                                                    | Evaluation For<br><b>Score (</b> sum of metri | m<br>cs 1, 2, 3 <b>)</b> : |                               |
|-------------------|----------------------------------------------------------------------|-------------------------|--------------------------------------------------------------|-----------------------------------------------|----------------------------|-------------------------------|
| SITE NAM          | IE/LOCATION                                                          |                         |                                                              |                                               |                            |                               |
|                   | SITE NUMBER                                                          | RIVI                    | ER BASIN                                                     | DRAI                                          | NAGE AREA (mi²)            |                               |
| LENGTH (          | OF STREAM REACH (ft)                                                 | LAT                     | _LONG                                                        | RIVER CODE                                    | RIVER MILE                 |                               |
| DATE              | SCORER                                                               | COMMENT                 | S                                                            |                                               |                            |                               |
| NOTE: (           | Complete All Items On This F                                         | orm - Refer to "Field   | l Evaluation Ma                                              | anual for Ohio's PHWH                         | Streams" for Instr         | uctions                       |
| STREAM<br>MODIFIC | I CHANNEL IN NONE /<br>CATIONS:                                      | NATURAL CHANNEL         |                                                              |                                               | ECENT OR NO REC            | OVERY                         |
| 1. S              | UBSTRATE (Estimate percent of                                        | every type of substrate | present. Check                                               | ONLY two predominant sub                      | strate TYPE boxes          | HHFI                          |
|                   | BLDR SLABS [16 pts]<br>BOULDER (>256 mm) [16 pts]<br>BEDROCK [16 pt] | PERCENT TYP             | SILT [3 pt]       SILT [3 pt]       LEAF PAC       FINE DETI | K/WOODY DEBRIS [3 pts]                        | <u>PERCENT</u>             | Metric<br>Points<br>Substrate |

|                                            | Action of the second se | (A)                                                                                                                                                                                                               | (Max of 8). Final metric<br>SILT [3 pt]<br>LEAF PACK/WOODY<br>FINE DETRITUS [3 p<br>CLAY or HARDPAN  <br>MUCK [0 pts]<br>ARTIFICIAL [3 pts] | predominant sub<br>score is sum of I<br>DEBRIS [3 pts]<br>ots]<br>[0 pt] | strate TYPE boxes         boxes A & B.         PERCENT                                | HHEI<br>Metric<br>Points<br>Substrate<br>Max = 40 |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------|
| SCORE OF                                   | TWO MOST PREDOMINATE SUBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TRATE TYPES:                                                                                                                                                                                                      | TOTAL NUMBER                                                                                                                                | R OF SUBSTRAT                                                            | E TYPES:                                                                              |                                                   |
| 2. Ma<br>eva<br>□ > 30<br>□ > 22<br>□ > 10 | ximum Pool Depth (Measure the ma<br>aluation. Avoid plunge pools from road<br>0 centimeters [20 pts]<br>2.5 - 30 cm [30 pts]<br>0 - 22.5 cm [25 pts]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | aximum pool depth with<br>I culverts or storm water                                                                                                                                                               | hin the 61 meter (200 ft<br>pipes) (Check ONLY<br>> 5 cm - 10 cm [15 p<br>< 5 cm [5 pts]<br>NO WATER OR MO                                  | t) evaluation reac<br>one box):<br>tts]<br>IST CHANNEL [(                | h at the time of                                                                      | Pool Depti<br>Max = 30                            |
| со                                         | MMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                   | MAXIMUM PC                                                                                                                                  | OOL DEPTH (cer                                                           | ntimeters):                                                                           |                                                   |
| 3. BA                                      | NK FULL WIDTH (Measured as the<br>0 meters (> 13') [30 pts]<br>0 m - 4.0 m (> 9' 7" - 13') [25 pts]<br>5 m - 3.0 m (> 9' 7" - 4' 8") [20 pts]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | average of 3-4 measure                                                                                                                                                                                            | ements) (Check<br>> 1.0 m - 1.5 m (> 3'<br>≤ 1.0 m (<=3' 3") [5 p                                                                           | x <b>ONLY one box</b><br>3" - 4' 8") [15 pts]<br>ts]                     | ):                                                                                    | Bankfull<br>Width<br>Max=30                       |
| со                                         | MMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                   | AVERAGE BA                                                                                                                                  | NKFULL WIDTH                                                             | l (meters):                                                                           |                                                   |
|                                            | RIPARIAN ZONE AND FLOODP<br>RIPARIAN WIDTH<br>R (Per Bank)<br>Wide >10m<br>Moderate 5-10m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | This information         LAIN QUALITY       ☆N         FLOODPLAIN QUALIT       L         L       R       (Most Predoc         □       Immature Fore       Immature Fore         □       Immature Fore       Field | on <u>must</u> also be comple<br>OTE: River Left (L) and<br><u>TY</u><br>ominant per Bank)<br>est, Wetland<br>orest, Shrub or Old           | eted<br>Right (R) as look                                                | ing downstream☆<br>onservation Tillage<br>rban or Industrial<br>pen Pasture. Row Croc | )                                                 |
|                                            | Narrow <5m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Residential,     Enced Pas                                                                                                                                                                                        | Park, New Field                                                                                                                             |                                                                          | ining or Construction                                                                 |                                                   |
|                                            | FLOW REGIME (At Time of Eval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | luation) (Check ONLY of                                                                                                                                                                                           | ne box):                                                                                                                                    | el, isolated pools                                                       | , no flow (Intermittent)                                                              |                                                   |

| ADDITIONAL STREAM INFORMATION (This Information Must Als                                                   | o be Completed):                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| QHEI PERFORMED? - 🗖 Yes 🗇 No QHEI Score                                                                    | (If Yes, Attach Completed QHEI Form)                                                                                                              |
| DOWNSTREAM DESIGNATED USE(S)                                                                               |                                                                                                                                                   |
| WWH Name:                                                                                                  | Distance from Evaluated Stream                                                                                                                    |
| CWH Name:                                                                                                  | Distance from Evaluated Stream                                                                                                                    |
| EWH Name:                                                                                                  | Distance from Evaluated Stream                                                                                                                    |
| MAPPING: ATTACH COPIES OF MAPS, INCLUDING THE E                                                            | NTIRE WATERSHED AREA. CLEARLY MARK THE SITE LOCATION                                                                                              |
| USGS Quadrangle Name:                                                                                      | NRCS Soil Map Page: NRCS Soil Map Stream Order                                                                                                    |
| County: Town                                                                                               | ship / City:                                                                                                                                      |
| MISCELLANEOUS                                                                                              |                                                                                                                                                   |
| Base Flow Conditions? (Y/N): Date of last precipitation:                                                   | Quantity:                                                                                                                                         |
| Photograph Information:                                                                                    |                                                                                                                                                   |
| Elevated Turbidity? (Y/N): Canopy (% open):                                                                |                                                                                                                                                   |
| Were samples collected for water chemistry? (Y/N): (Note la                                                | b sample no. or id. and attach results) Lab Number:                                                                                               |
| Field Measures: Temp (°C) Dissolved Oxygen (mg/l)                                                          | pH (S.U.) Conductivity (μmhos/cm)                                                                                                                 |
| Is the sampling reach representative of the stream (Y/N) If not                                            | , please explain:                                                                                                                                 |
| Additional comments/description of pollution impacts:                                                      |                                                                                                                                                   |
| BIOTIC EVALUATION                                                                                          |                                                                                                                                                   |
| Performed? (Y/N): (If Yes, Record all observations. Vouchul ID number. Include appropriate field dat       | er collections optional. NOTE: all voucher samples must be labeled with the sit<br>a sheets from the Primary Headwater Habitat Assessment Manual) |
| Fish Observed? (Y/N) Voucher? (Y/N) Salamanders O<br>Frogs or Tadpoles Observed? (Y/N) Voucher? (Y/N) Aqua | Dbserved? (Y/N) Voucher? (Y/N)<br>atic Macroinvertebrates Observed? (Y/N) Voucher? (Y/N)                                                          |
| Comments Regarding Biology:                                                                                |                                                                                                                                                   |
|                                                                                                            |                                                                                                                                                   |

## DRAWING AND NARRATIVE DESCRIPTION OF STREAM REACH (This <u>must</u> be completed):

Include important landmarks and other features of interest for site evaluation and a narrative description of the stream's location



| Lake / Lacus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tuary (Lentic) (                                                                                                                                                                     | QHEI Field Sł                                                                                                                                                                                                                       | neet Ohio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Environmental<br>Protection Agency                                                                                                                     | QHEI Score:                                                                                                                                                                                                                                                                                                            |                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| RIVERCODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RIVERMILE                                                                                                                                                                            | WAT                                                                                                                                                                                                                                 | ERBODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DISTA                                                                                                                                                  | ANCE ASSESSED (m)                                                                                                                                                                                                                                                                                                      |                                                                     |
| DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                        |                                                                     |
| SCORER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LAT                                                                                                                                                                                  | LONG                                                                                                                                                                                                                                | COMMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IT                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                        |                                                                     |
| 1] SUBSTRATE (Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eck ONLY Two Substrate                                                                                                                                                               | TYPE BOXES; Estin                                                                                                                                                                                                                   | nate % or note every                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | type present);                                                                                                                                         | LAKE: LACUSTUAR                                                                                                                                                                                                                                                                                                        | Y:                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                      |                                                                                                                                                                                                                                     | Check ONE (or 2 & A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IN (ERAGE) (                                                                                                                                           | CheckONE (or 2 & AVERAGE)                                                                                                                                                                                                                                                                                              |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                      |                                                                                                                                                                                                                                     | - D-LIMESTONE [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SLT:                                                                                                                                                   | J-SILTHEAVY [2]                                                                                                                                                                                                                                                                                                        | Substrate                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                        | SILT MODERATE [-1]                                                                                                                                                                                                                                                                                                     |                                                                     |
| GRAVEL [7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                      | T [2]                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                        | J-SILT NORMAL [0]                                                                                                                                                                                                                                                                                                      |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ╔╢╟╺╺╺╺╺╺╺                                                                                                                                             |                                                                                                                                                                                                                                                                                                                        | Max 20                                                              |
| NOTE: Japara sludga li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pet originator, from point so                                                                                                                                                        | 172.05                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | " SLT [                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |                                                                     |
| score on natural substr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ates                                                                                                                                                                                 |                                                                                                                                                                                                                                     | -HARDPAN [0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ORIGIN:                                                                                                                                                | J-ORGANIC [1]                                                                                                                                                                                                                                                                                                          |                                                                     |
| NUMBER OF SUBSTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATE TYPES                                                                                                                                                                            | [2]<br>ŋ                                                                                                                                                                                                                            | U-SHALE[-1]<br>U-COAL/ORE[-2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                        | J-NONE[1]                                                                                                                                                                                                                                                                                                              |                                                                     |
| COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                        |                                                                     |
| 2] COVER TYPES<br>-OFF-SHORE SAND I<br>-OVERHANGING VEC<br>-SHALLOWS (ON BE<br>-ROOTMATS [1]<br>COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>TYPE:</u><br>BARS [4] -DEEPWAT<br>BETATION [1] -ROOTWAD<br>ACH) [1] -BOULDER<br>-SAND BEA                                                                                         | (Check All That Apply)<br>ER>1 M[1] □-WETLA<br>DS[1] □-SUBME<br>S[1] □-LOGS (<br>CH[1] □-GRAVE                                                                                                                                      | ND POOLS [1]<br>RGED AQUATIC VEG. [<br>DRWOODY DEBRIS [1]<br>L BEACH [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AMOUNT: (Ch<br>D-EXTENSIVE<br>D-MODERATE<br>D-SPARSE 5-2<br>D-NEARLY AB                                                                                | eck ONLY One or check2 and<br>>75% [9]<br>25-75% [7]<br>5% [3]<br>SENT <5% [1]                                                                                                                                                                                                                                         | AVERAGE)<br>Cover                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                        | ······································                                                                                                                                                                                                                                                                                 |                                                                     |
| SHORE SINUOSITY         SHORE SINUOSITY         HGH [2]         HODERATE [4]         HONE [1]         HORE to BOTTOM SI         SHORE to BOTTOM SI | DEVELOPMENT  DEVELOPMENT  DEVELOPMENT  D-EXCELLENT[6]  D-GOOD [5]  D-FAIR[3]  D-FAIR[3]  D-FOOR[1]  OPEMORPHOLOGIES  D-SLOPE >45 deg. [2]  D-SLOPE 90 deg. [0]  AND BANK EROSION (0) | MODIFICATION<br>□-NONE [7]<br>□-RECOVERED [5]<br>□-RECOVERING [3]<br>□-RECENTORNO<br>RECOVERY [1]<br>AVERAGE DEPTH ((<br>□-<50 cm [0]<br>□-<50 -<100 cm [1]<br>□->200 -4 00 cm [3]<br>□->200 -4 00 cm [3]<br>Check OVE box PER bank | STABLITY<br>→HIGH [3]<br>→MODERATE [2]<br>→MODERATE [2]<br>→LOW [1]<br>of 5 measures)<br>→ 400 - 500 cm [4]<br>→ 500 - 900 cm [2]<br>→ 900 cm [1]<br>or 2 and AVERAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MODIFICATION<br>□-REMENTE<br>□-RAILROAD<br>□-RAILROAD<br>□-RAILROAD<br>□-RAILROAD<br>□-RAILROAD<br>□-TWO SIDE<br>MODIFICATI<br>□-SHP CHAN<br>Shore Rig | NS OF SAMPLED SHORE         D[-1]       I-STEEL BU         D[1]       I-STEEL BU         D[1]       I-STEEL BU         D[1]       I-STEEL BU         TIES [-1]       I-DIKES [-1]         [-1]       I-BANK SHAL         CHANNEL       I-WOOD PILL         IONS [-1]       INEL [-2]         INEL [-2]       INEL [-2] | IKHEADS [2]<br>PING [-1]<br>NGS [1]<br>Shore Line<br>Max 20<br>Lake |
| RIPARIAN WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L R Most Predomin                                                                                                                                                                    | ORE LINE QUALITY (PA)<br>ant Per Bank)                                                                                                                                                                                              | ST 100 FOOT RIPARIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ū                                                                                                                                                      | BANK EROSION                                                                                                                                                                                                                                                                                                           | <b></b> .                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50 m [3]<br>[2]<br>[3]<br>[4 5 m [1]<br>[4 6 7 8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1             | VETLAND, LAKE [3]<br>ROLD FIELD [2]<br>, ORCHARD [2]<br>ASTURE [1]<br>IAL, PARK, NEW FIELD [                                                                                                                                        | CONSERVATI      CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI     CONSERVATI | ION TILLIAGE [1]<br>IDUSTRIAL [0]<br>RE, ROWCROP [0]<br>STRUCTION [0]<br>AND [0]                                                                       |                                                                                                                                                                                                                                                                                                                        | Riparian<br>31 Max 10                                               |
| COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                                                                                                                                                                             |                                                                                                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                        | ······                                                                                                                                                                                                                                                                                                                 |                                                                     |
| 5] AQUATIC VEGET<br>(Score all for observed abu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATION QUALITY: PLAN<br>Indance: ABUNDANT = [3]; CO                                                                                                                                   | T SPECIES OBSERVI<br>MMON = [5]; FEW = [1]; UN                                                                                                                                                                                      | <u>ED</u> (Sum All Scores)<br>♦COM MON = [0])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                        | NO AQUATIC VEGETATI                                                                                                                                                                                                                                                                                                    | ON = 0                                                              |
| -Pond Lilles (NY<br>-Pond Weed (PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MPHAEA)Se<br>DTAMOGETON)BL                                                                                                                                                           | edge (CYPERACEAE)<br>Ilrush (SCIRPUS)                                                                                                                                                                                               | -Wild Celery (V<br>-Waterweed (El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ALLISNERIA)<br>LODEA)                                                                                                                                  | Wild Rice (ZIZANIA)                                                                                                                                                                                                                                                                                                    | Vegetation                                                          |
| (Score all for observed abu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ndance: ABUNDANT = [-2]; CC                                                                                                                                                          | MMON = [-1]; FEW = [0])                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                        | _  ( _)]                                                            |
| -Puple Loosest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rifeReed Grass                                                                                                                                                                       | -Euraslan Milfoli                                                                                                                                                                                                                   | Cattails                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Algae (mats) _                                                                                                                                         | -Algae (planktonic)                                                                                                                                                                                                                                                                                                    | Max 30                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                        |                                                                     |

| WATERBODY MEASUREMENTS                                | AVERA | ge width: | AVERAGE DEPTH:                     | Maxim                       | num Depth:                               |                            |
|-------------------------------------------------------|-------|-----------|------------------------------------|-----------------------------|------------------------------------------|----------------------------|
| Second Sampling Pass:<br>Third Sampling Pass:         |       |           |                                    |                             | Subjective Rating<br>(1 – 10)<br>Photos: | Aesthetic Rating<br>(1-10) |
| Zebra Mussel/Quagga Mussel Co<br>First Sampling Pass: | Gear  | >60%      | 0 □-25->10% □-<10<br>Water Clarity | 0->1% □-1-0%<br>Wave Height |                                          |                            |

## PHWH STREAM BIOLOGICAL CHARATERISTICS FIELD SHEET:

| 1. Fish: Voucher Specimens Retained? (select) Sample Method |  |               | Time Spent (minutes):<br>Stream Length Assessed (meters) |  |  |
|-------------------------------------------------------------|--|---------------|----------------------------------------------------------|--|--|
| Species                                                     |  | Number Caught | Notes                                                    |  |  |
|                                                             |  |               |                                                          |  |  |
|                                                             |  |               |                                                          |  |  |
|                                                             |  |               |                                                          |  |  |
|                                                             |  |               |                                                          |  |  |
|                                                             |  |               |                                                          |  |  |
|                                                             |  |               |                                                          |  |  |
|                                                             |  | <u> </u>      |                                                          |  |  |
|                                                             |  |               |                                                          |  |  |

### 2. Salamanders: Voucher Specimens Retained? (circle) Y / N Time Spent (minutes):\_\_\_\_ Sample Method Stream Length Assessed (meters)

| Sample Method                                    |          | Stream Length Assessed (meters) |              |  |  |
|--------------------------------------------------|----------|---------------------------------|--------------|--|--|
| Species (Genus)                                  | # Larvae | # Juveniles/Adults              | Total Number |  |  |
| <b>Mountain Dusky</b> (Desmognathus ochrophaeus) |          |                                 |              |  |  |
| Northern Dusky (Desmognathus fuscus)             |          |                                 |              |  |  |
| <b>Two-lined</b> (Eurycea bislineata)            |          |                                 |              |  |  |
| Long-tailed (Eurycea<br>longicauda)              |          |                                 |              |  |  |
| <b>Cave</b> (Eurycea<br>lucifuga)                |          |                                 |              |  |  |
| <b>Red</b> (Pseudotriton ruber)                  |          |                                 |              |  |  |
| <b>Mud</b> (Pseudotriton montanus)               |          |                                 |              |  |  |
| <b>Spring</b> (Gyrinophilus porphyriticus)       |          |                                 |              |  |  |
| Mole spp. (Ambystoma spp.)                       |          |                                 |              |  |  |
| Four-toed (Hemidactylium scutatum)               |          |                                 |              |  |  |
| Other (name)                                     |          |                                 |              |  |  |
| Total                                            |          |                                 |              |  |  |

Notes on Vertebrates:

### **3.** Macroinvertebrate Scoring Sheet:

#### THE HEADWATER MACROINVERTEBRATE FIELD EVALUATION INDEX (HMFEI) SCORING SHEET

Indicate Abundance of Each Taxa Above each White Box.

Record HMFEI Scoring Value Points Within each Box.

For EPT taxa, also indicate the different taxa present.

| <b>Key:</b> $\mathbf{V} = \text{Very Abune}$ | dant (> 50); A = Abundant (10-50); C           | = Common (3 -9); <b>R</b> $=$ Rare (<3) |
|----------------------------------------------|------------------------------------------------|-----------------------------------------|
| Sessile Animals (Porifera,                   | Crayfish ( <b>Decapoda</b> )                   | Fishfly Larvae                          |
| Cnidaria, Bryozoa)                           |                                                | (Corydalidae)                           |
| (HMFEI pts = 1)                              | (HMFEI pts = 2)                                | (HMFEI pts = 3)                         |
| Aquatic Worms (Turbellaria, Hirud            | linea, Dragonfly Nymphs                        | Water Penny Beetles                     |
| Oligochaeta)                                 | (Anisoptera)                                   | (Psephenidae)                           |
| (HMFEI pts = 1)                              | (HMFEI pts = 2)                                | (HMFEI pts = 3)                         |
| Sow Bugs                                     | Riffle Beetles (Dryopidae,                     | Cranefly Larvae                         |
| (Isopoda)                                    | Elmidae, Ptilodactylidae)                      | (Tipulidae)                             |
| (HMFEI pts = 1)                              | (HMFEI pts = 2)                                | (HMFEI pts = 3)                         |
| Scuds (Amphipoda)                            | Larvae of other Flies (enter name in comments) | EPT TAXA*                               |
| (HMFEI pts = 1)                              | (Diptera):                                     |                                         |
|                                              | (HMFEI pts = 1)                                | Total No. EPT Taxa =                    |
| Water Mites (Hydracarina)                    | Midges (Chironomidae)                          | Mayfly Nymphs (Ephemeroptera)           |
| (HMFEI $pts = 1$ )                           | (HMFEI $pts = 1$ )                             | Taxa Present:                           |
|                                              |                                                | [HMFEI pts =                            |
|                                              |                                                | No. Taxa (x) 3]                         |
| Damselfly Nymphs                             | Snails                                         |                                         |
| (Zygoptera)                                  | (Gastropoda)                                   |                                         |
| (HMFEI pts = 1)                              | (HMFEI pts = 1)                                |                                         |
| Alderfly Larvae                              | Clams                                          | Stonefly Nymphs (Plecoptera)            |
| (Sialidae)                                   | (Bivalvia)                                     | Taxa Present:                           |
| (HMFEI pts = 1)                              | (HMFEI pts = 1)                                | [HMFEI pts =                            |
|                                              |                                                | No. Taxa (x) 3]                         |
| Other Beetles                                | Other Taxa :                                   |                                         |
| (Coleoptera)                                 | 7                                              |                                         |
| (HMFEI pts = 1)                              |                                                |                                         |
| Other Taxa:                                  | Other Taxa:                                    | Caddisfly Larvae (Trichoptera)          |
|                                              |                                                | Taxa Present:                           |
|                                              |                                                | [HMFEI pts =                            |
|                                              |                                                | No. Taxa (x) 3]                         |
| Other Taxa:                                  | Other Taxa                                     |                                         |
|                                              |                                                |                                         |

\*Note: EPT identification based upon Family or Genus level of taxonomy

Voucher Sample ID\_

Time Spent (minutes):\_\_\_\_\_

Notes on Macroinvertebrates: (Predominant Organisms; Other Common Organisms; Diversity Estimate)

Final HMFEI Calculated Score (Sum of All White Box Scores) =

IF Final HMFEI Score is > 19, Then CLASS III PHWH STREAM

IF Final HMFEI Score is 7 to 19, Then CLASS II PHWH STREAM

IF Final HMFEI Score is < 7, Then CLASS I PHWH STREAM

## **NEORSD Surface Water Condition Sampling Field Data Form**

| Stream:                              | Date:                                    |                            | Collectors:         |                      |
|--------------------------------------|------------------------------------------|----------------------------|---------------------|----------------------|
| Gage Station and ID                  |                                          | Daily Me                   | an Discharge:       | ft <sup>3</sup> /sec |
| Was this sample taker                | during or following a wet                | weather event?             | YES / NO            |                      |
| Water Quality Meters                 | Used:                                    |                            |                     |                      |
| Time (hrs):                          | River M                                  | lile (Site):               |                     |                      |
| <u>Weather:</u> Clear<br>Steady Rain | Partly Cloudy Overcas<br>Heavy Snow Melt | st Light Rain/Sh<br>Other: | owers Heavy Rain    | n                    |
| <u>Flow:</u> Dry Inte                | ermittent Minimal                        | Baseline/Normal            | Elevated Flood      |                      |
| HD Status:                           | OK Other:                                |                            |                     |                      |
| Color: Clear                         | Muddy                                    | Tea Milk                   | y Other:            |                      |
| Odor: Normal                         | Petroleum Anaer                          | obic Sewage                | Chemical O          | ther:                |
| Surface Coating:                     | None Foam                                | Oily Scun                  | n Other:            |                      |
| Field Parameters:                    | Conductivity (µmhos/cm)                  | :                          | Sp. Cond. (µmhos/cn | n):                  |
|                                      | Dissolved Oxygen (mg/L)                  | :                          | D.O. (%):           |                      |
|                                      | Temperature (°C)                         | :                          | pH (s.u.):          |                      |
| Turbidity 1 (NTU)                    | Turbidity                                | 2 (NTU):                   | Average (NTU        | J):                  |
| General Comments:                    |                                          |                            |                     |                      |
|                                      |                                          |                            |                     |                      |
|                                      |                                          |                            |                     |                      |
| Time (hrs):                          | River M                                  | lile (Site):               |                     |                      |
| Weather: Clear<br>Steady Rain        | Partly Cloudy Overcas<br>Heavy Snow Melt | st Light Rain/Sh<br>Other: | owers Heavy Rai     | n                    |
| <u>Flow:</u> Dry Inte                | ermittent Minimal                        | Baseline/Normal            | Elevated Flood      |                      |
| HD Status:                           | OK Other:                                |                            |                     |                      |
| Color: Clear                         | Muddy                                    | Tea Milk                   | y Other:            |                      |
| Odor: Normal                         | Petroleum Anaer                          | obic Sewage                | Chemical O          | ther:                |
| Surface Coating:                     | None Foam                                | Oily Scun                  | n Other:            |                      |
| Field Parameters:                    | Conductivity (µmhos/cm)                  | :                          | Sp. Cond. (µmhos/cn | n):                  |
|                                      | Dissolved Oxygen (mg/L)                  | :                          | D.O. (%):           |                      |
|                                      | Temperature (°C)                         | :                          | pH (s.u.):          |                      |
| Turbidity 1 (NTU)                    | Turbidity                                | 2 (NTU):                   | Average (NTU        | J):                  |
| General Commen                       | ts:                                      |                            |                     |                      |
|                                      |                                          |                            |                     |                      |

Appendix B

| Parameter                                  | Additional Name      | Test                                                | Unit      | 2016<br>Minimum Detection                     | 2016<br>Practical Quantitation |
|--------------------------------------------|----------------------|-----------------------------------------------------|-----------|-----------------------------------------------|--------------------------------|
|                                            |                      |                                                     |           | Limit                                         | Limit                          |
| Alkalinity                                 | Alkalinity           | EPA 310.2                                           | mg/L      | 4.32                                          | 10.0                           |
| Mercury                                    | Hg                   | EPA 245.1                                           | μg/L      | 0.006 <sup>ª</sup>                            | 0.050 <sup>a</sup>             |
| Ammonia <sup>1</sup>                       | NH <sub>3</sub>      | EPA 350.1                                           | mg/L      | 0.009                                         | 0.020                          |
| Nitrite                                    | NO2                  | SM 4500 NO <sub>2</sub> <sup>-</sup> B <sup>2</sup> | mg/L      | 0.008                                         | 0.020                          |
| Nitrite + Nitrate                          | $NO_2 + NO_3$        | EPA 353.2                                           | mg/L      | 0.007                                         | 0.020                          |
| Total Kjeldahl Nitrogen                    | TKN                  | EPA 351.2                                           | mg/L      | 0.081 <sup>a</sup>                            | 0.500 <sup>a</sup>             |
| Dissolved Reactive Phosphorus              | DRP                  | EPA 365.1                                           | mg/L      | 0.003 <sup>a</sup>                            | 0.010 <sup>a</sup>             |
| Low Level Dissolved Reactive<br>Phosphorus | LLDRP                | EPA 365.1                                           | μg/L      | 0.42                                          | 1.00                           |
| Total Phosphorus                           | Total-P              | EPA 365.1                                           | mg/L      | 0.003                                         | 0.010                          |
| Chloride                                   | Chloride by IC       | EPA 300.0                                           | mg/L      | 0.154                                         | 5.000                          |
| Sulfate                                    | Sulfate by IC        | EPA 300.0                                           | mg/L      | 0.274                                         | 5.000                          |
| Silver                                     | Ag                   | EPA 200.8                                           | μg/L      | 0.114                                         | 0.500                          |
| Aluminum                                   | Al                   | EPA 200.8                                           | μg/L      | 2.141                                         | 5.000                          |
| Arsenic                                    | As                   | EPA 200.8                                           | μg/L      | 1.000                                         | 2.000                          |
| Barium                                     | Ва                   | EPA 200.8                                           | μg/L      | 0.109                                         | 0.500                          |
| Beryllium                                  | Be                   | EPA 200.8                                           | μg/L      | 0.103                                         | 0.500                          |
| Calcium                                    | Ca                   | EPA 200.8                                           | μg/L      | 27.913                                        | 125.000                        |
| Cadmium                                    | Cd                   | EPA 200.8                                           | μg/L      | 0.055                                         | 0.500                          |
| Cobalt                                     | Со                   | EPA 200.8                                           | μg/L      | 0.051                                         | 0.500                          |
| Chromium                                   | Cr                   | EPA 200.8                                           | μg/L      | 0.049 <sup>a</sup>                            | 0.500 <sup>a</sup>             |
| Copper                                     | Cu                   | EPA 200.8                                           | μg/L      | 0.073 <sup>a</sup>                            | 1.000 <sup>a</sup>             |
| Iron                                       | Fe                   | EPA 200.8                                           | μg/L      | 2.008                                         | 5.000                          |
| Potassium                                  | К                    | EPA 200.8                                           | μg/L      | 81.206                                        | 250.000                        |
| Magnesium                                  | Mg                   | EPA 200.8                                           | μg/L      | 11.746                                        | 125.000                        |
| Manganese                                  | Mn                   | EPA 200.8                                           | μg/L      | 0.082                                         | 1.000                          |
| Molybdenum                                 | Мо                   | EPA 200.8                                           | μg/L      | 0.090                                         | 0.500                          |
| Sodium                                     | Na                   | EPA 200.8                                           | μg/L      | 84.504                                        | 250.000                        |
| Nickel                                     | Ni                   | EPA 200.8                                           | μg/L      | 0.207                                         | 2.000                          |
| Lead                                       | Pb                   | EPA 200.8                                           | μg/L      | 0.055                                         | 0.500                          |
| Antimony                                   | Sb                   | EPA 200.8                                           | μg/L      | 0.118                                         | 0.500                          |
| Selenium                                   | Se                   | EPA 200.8                                           | μg/L      | 0.517                                         | 2.500                          |
| Tin                                        | Sn                   | EPA 200.8                                           | μg/L      | 0.383ª                                        | 2.500 <sup>a</sup>             |
| Strontium                                  | Sr                   | EPA 200.8                                           | μg/L      | 0.117                                         | 0.500                          |
| Titanium                                   | Ti                   | EPA 200.8                                           | μg/L      | 0.346                                         | 1.000                          |
| Thallium                                   | TI                   | EPA 200.8                                           | μg/L      | 0.118                                         | 0.500                          |
| Vanadium                                   | V                    | EPA 200.8                                           | μg/L      | 1.338                                         | 5.000                          |
| Zinc                                       | Zn                   | EPA 200.8                                           | μg/L      | 0.241 <sup>a</sup>                            | 5.000 <sup>a</sup>             |
| Total Metals                               | Total Metals (calc.) | EPA 200.8                                           | μg/L      | μg/L =(Cr μg/L)+(Cu μg/L)+(Ni μg/L)+(Zn μg/L) |                                |
| Hardness                                   | Hardness (calc.)     | SM 2340 <sup>2</sup>                                | mg/L      | CaCO3 mg/L =(2.497*Ca                         | mg/L)+(4.118*Mg mg/L)          |
|                                            |                      | EPA 1603                                            | cfu/100mL | 1 colony                                      |                                |
| Escherichia coli                           | E. coli              | Colilert QT<br>(SM 9223 B 20th<br>Ed)               | MPN/100mL | 1 MPN                                         | 1 MPN                          |
| Chlorophyll a                              | Chlorophyll a        | EPA 445.0                                           | μg/L      |                                               |                                |
| Chemical Oxygen Demand                     | COD                  | EPA 410.4                                           | mg/L      | 2.1                                           | 10                             |
| Biological Oxygen Demand                   | BOD                  | SM 5210 <sup>2</sup>                                | mg/L      | 2                                             | N/A                            |
| Total Solids                               | TS                   | SM 2540 B <sup>2</sup>                              | mg/L      | 1                                             | 5                              |
| Total Suspended Solids                     | TSS                  | SM 2540 D <sup>2</sup>                              | mg/L      | 0.5                                           | 1                              |
| Total Dissolved Solids                     | TDS                  | SM 2540 C <sup>2</sup>                              | mg/L      | 1                                             | 5                              |
| Turbidity **                               |                      | EPA 180.1                                           | NTU       | 0.1                                           | 0.2                            |
| Field Parameter                            |                      | Test                                                |           | (Value Reported                               | in)                            |
| рН                                         |                      | EPA 150.1 <sup>2</sup>                              |           | s.u.                                          |                                |
| Conductivity                               |                      | SM 2510A <sup>2</sup>                               |           | μs/cm                                         |                                |
| Specific Conductivity                      |                      | SM 2510B <sup>2</sup>                               |           | μs/cm                                         |                                |
| Dissolved Oxygen                           | DO                   | SM 4500-0 G <sup>2</sup>                            |           | mg/L                                          |                                |
| Temperature                                | Temp                 | EPA 1701.1 <sup>2</sup>                             |           | <u>°C</u>                                     |                                |
| Turbidity **                               | · · · ·              | EPA 180.1                                           |           | NTU                                           |                                |
| · · ·                                      |                      |                                                     | -         |                                               |                                |

<sup>1</sup> Listed MDL/PQL is for undistilled samples. Any samples that require distillation will have a MDL = 0.020 mg/L, PQL = 0.100 mg/L

<sup>2</sup> <u>Standard Methods for the Examination of Water and Wastewater</u>, Method approved by Standard Methods Committee, 1997. Editorial revisions, 2011.

 $^{\rm a}2016$  MDL and PQL not yet determined as of 04/07/2016. Values listed are 2015 MDL/PQL.

 $\ast\ast$  Turbidity will either be completed in the field or at the laboratory.

Appendix C



## **YSIEnvironmental**



## Pure Data for a Healthy Planet.®

A rugged, cost-effective multiparameter handheld system designed for the field!

## YSI 556 Multiparameter System

## Versatile, multiparameter handheld instrument

Rugged and reliable, the YSI 556 MPS (Multiprobe System) combines the versatility of an easy-to-use, easy-to-read handheld unit with all the functionality of a multiparameter system.

- Simultaneously measures dissolved oxygen, pH, conductivity, temperature, and ORP
- Field-replaceable electrodes
- Compatible with EcoWatch' for Windows' data analysis software
- Stores over 49,000 data sets, time and date stamped, interval or manual logging
- Three-year warranty on the instrument; one-year on the probes
- GLP assisting, records calibration data in memory
- Available with 4, 10, and 20-m cable lengths
- IP-67, impact-resistant, waterproof case
- Easy-to-use, screw-on cap DO membranes
- RS-232 interface for PC connection

## **Options to Fit Your Applications!**

• Battery Options – The unit is powered by alkaline batteries or an optional rechargeable battery pack with quick-charge feature.

• Optional Barometer – Internal barometer can be user-calibrated and displayed along with other data, used in dissolved oxygen calibrations, and logged to memory for tracking changes in barometric pressure. (Choose 556-02)

• Optional Flow Cell - The 5083 flow cell can be used for ground water applications or anytime water is pumped for sampling.

• Carrying Case – The instrument comes standard with YSI 5061, a soft-sided carrying case with enough space for the 556, a 20-meter cable, and calibrating supplies. An optional 5080 hard-sided carrying case is also available.

• Confidence Solution<sup>•</sup> - Quality assurance ensured. Quickly check conductivity, pH, and ORP readings with one solution.

www.YSI.com/556



+1 937 767 7241

800 897 4151 (US) www.ysi.com

YSI Environmental +1 937 767 7241 Fax +1 937 767 9353 environmental@ysi.com

YSI Integrated Systems +1 508 748 0366 systems@ysi.com

SonTek/YSI +1 858 546 8327 inquiry@sontek.com

YSI Gulf Coast +1 225 753 2650 environmental@ysi.com

AMJ Environmental +1 727 565 2201 amj@ysi.com

YSI Hydrodata (UK) +44 1462 673 581 europe@ysi.com

YSI Middle East (Bahrain) +973 1753 6222 halsalem@ysi.com

YSI (Hong Kong) Limited +852 2891 8154 hongkong@ysi.com

YSI (China) Limited +86 532 575 3636 beijing@ysi-china.com.

YSI Nanotech (Japan) +81 44 222 0009 nanotech@ysi.com

YSI India +91 989 122 0639 sham@ysi.com

YSI Australia +61 7 390 17223 acorbett@ysi.com



EcoWatch, Pure Data for a Healthy Planet, Confidence Solution and Who's Minding the Planet? are registered trademarks of YSI Incorporated. Windows is a registered trademark of Microsoft,

©2009 YSI Incorporated Printed in USA 0709 W11-06 CE

YSI incorporated Who's Minding the Planet?"

## 5563 MPS Sensor Specifications

| Dissolved Oxygen<br>(% saturation) | Sensor Type<br>Range<br>Accuracy<br>whichever is grea<br>Resolution | Steady state polarographic<br>0 to 500% air saturation<br>0 to 200% air saturation, ± 2% of the reading or ±2% air saturation,<br>ater; 200 to 500% air saturation, ± 6% of the reading<br>0.1% air saturation                             |
|------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dissolved Oxygen (mg/L)            | Sensor Type<br>Range<br>Accuracy<br>Resolution                      | Steady state polarographic<br>0 to 50 mg/L<br>0 to 20 mg/L, ± 2% of the reading or ±0.2 mg/L, whichever is greater;<br>20 to 50 mg/L, ± 6% of the reading<br>0.01 mg/L                                                                     |
| Temperature                        | Sensor Type<br>Range<br>Accuracy<br>Resolution                      | YSI Temperature Precision <sup>*</sup> thermistor<br>-5 to 45°C<br>± 0.15°C<br>0.1°C                                                                                                                                                       |
| Conductivity                       | Sensor Type<br>Range<br>Accuracy<br>± 1.0% of reading<br>Resolution | 4-electrode cell with autoranging<br>0 to 200 mS/cm<br>± 0.5% of reading or ± 0.001 mS/cm; whichever is greater (4-meter cable)<br>g or ± 0.001 mS/cm; whichever is greater (20-meter cable)<br>0.001 mS/cm to 0.1 mS/cm (range-dependent) |
| Salinity                           | Sensor Type<br>Range<br>Accuracy<br>Resolution                      | Calculated from conductivity and temperature<br>0 to 70 ppt<br>± 1.0% of reading or ±0.1 ppt, whichever is greater<br>0.01 ppt                                                                                                             |
| pH (optional)                      | Sensor Type<br>Range<br>Accuracy<br>Resolution                      | Glass combination electrode<br>0 to 14 units<br>±0.2 units<br>0.01 units                                                                                                                                                                   |
| ORP (optional)                     | Sensor Type<br>Range<br>Accuracy<br>Resolution                      | Platinum button<br>-999 to +999 mV<br>± 20 mV<br>0.1 mV                                                                                                                                                                                    |
| Total Dissolved Solids<br>(TDS)    | Sensor Type<br>Range<br>Resolution                                  | Calculated from conductivity (variable constant, default 0.65)<br>0 to 100 g/L<br>4 digits                                                                                                                                                 |
| Barometer (optional)               | Range<br>Accuracy<br>Resolution                                     | 500 to 800 mm Hg<br>± 3 mm Hg within ± 10°C temperature range from calibration point<br>0.1 mm Hg                                                                                                                                          |

## **YSI 556 Instrument Specifications**

| Size                  | 11.9 cm width x 22.9 cm lenth (4.7 in. x 9 in.)                                          |
|-----------------------|------------------------------------------------------------------------------------------|
| Weight with batteries | 2.1 lbs. (916 grams)                                                                     |
| Power                 | 4 alkaline C-cells; optional rechargeable pack                                           |
| Cables                | 4-, 10-, and 20-m (13.1, 32.8, 65.6 ft.) lengths                                         |
| Worranty              | 3-year instrument; 1-year probes and cables                                              |
| Communication Port    | RS-232 Serial                                                                            |
| Data Logget           | 49,000 data sets, date and time stamp, manual or logging, with user-selectable intervals |

#### 556 Ordering Information (Order all items separately)

| 556-01  | Instrument (with 5061 large, soft-sided carrying case)                                                                |      |
|---------|-----------------------------------------------------------------------------------------------------------------------|------|
| 556-02  | Instrument with barometer option (with 5061 carrying case)                                                            |      |
| 5563-4  | 4-m cable and DO/temp/conductivity                                                                                    | 3.1  |
| 5563-10 | 10-m cable and DO/temp/conductivity                                                                                   |      |
| 5563-20 | 20-m cable and DO/temp/conductivity                                                                                   | 7.1  |
| 5564    | pH Probe for any 5563 cable                                                                                           |      |
| 5565    | pH/ORP Probe for any 5563 cable                                                                                       |      |
| 5118    | Rechargeable battery pack kit (includes battery, adapter, charger)                                                    |      |
| 514     | Ultra clamp, C-clamp mount                                                                                            |      |
| 516     | Charger, cigarette lighter                                                                                            |      |
| 4654    | Tripod (small tripod for instrument)                                                                                  |      |
| 5060    | Small carrying case, soft-sided (fits instrument and 4-m cable)                                                       | ÷ .  |
| 5065    | Form-fitted carrrier with shoulder strap                                                                              | 12   |
| 5080    | Small carrying case, hard-sided (fits instrument, 4-m cable, flow cell, batteries, membrane kit, calibration bottles) |      |
| 5083    | Flow cell                                                                                                             |      |
| 5085    | Hands-free harness                                                                                                    | 1.71 |
| 5580    | Confidence Solution <sup>®</sup> (insure probe accuracy with a simple field-<br>check for conductivity, pH, and ORP)  |      |



The 5080 carrying case with 556, 5563-4 cable, and 5083 flow cell.





The YSI 600XL and 600XLM

## YSI 600XL and 600XLM Sondes

### Measure multiple parameters simultaneously

The YSI 600XL and YSI 600XLM compact sondes measure eleven parameters simultaneously:

Temperature Conductivity Specific Conductance Salinity Resistivity TDS pH ORP Depth or Level Rapid Pulse<sup>™</sup> DO (% and mg/L)

### **Connect with Data Collection Platforms**

Either sonde can easily connect to the YSI 6200 DAS (Data Acquisition System), YSI EcoNet<sup>™</sup> or your own data collection platform, via SDI-12 for remote and real-time data acquisition applications.

### **Economical Logging System**

The YSI 600XLM is an economical logging system for long-term, *in situ* monitoring and profiling. It will log all parameters at programmable intervals and store 150,000 readings. At one-hour intervals, the instrument will log data for about 75 days utilizing its own power source. The 600XL can also be utilized in the same manner with user-supplied external power.

- Either sonde fits down 2-inch wells
- Horizontal measurements in very shallow waters
- Stirring-independent Rapid Pulse\* dissolved oxygen sensor
- Field-replaceable sensors
- Easily connects to data collection platforms
- Available with detachable cables to measure depth up to 200 feet
- Compatible with YSI 650 Multiparameter Display System
- Use with the YSI 5083 flow cell for groundwater applications



Economical, multiparameter sampling or logging in a compact sonde

## Sensor performance verified\*

The  $6820 \vee 2$  and  $6920 \vee 2$  sondes use sensor technology that was verified through the US EPA's Environmental Technology Verification Program (ETV). For information on which sensors were performance-verified, turn this sheet over and look for the ETV logo.





To order, or for more info, contact YSI Environmental.

+1 937 767 7241 800 897 4151 (US) www.ysi.com

YSI Environmental +1 937 767 7241 Fax +1 937 767 9353 environmental@ysi.com

Endeco/YSI +1 508 748 0366 Fax +1 508 748 2543 systems@ysi.com

SonTek/YSI +1 858 546 8327 Fax +1 858 546 8150 inquiry@sontek.com

YSI Gulf Coast +1 225 753 2650 Fax +1 225 753 8669 environmental@ysi.com

YSI Hydrodata (UK) +44 1462 673 581 Fax +44 1462 673 582 europe@ysi.com

YSI Middle East (Bahrain) +973 1753 6222 Fax +973 1753 6333 halsalem@ysi.com

YSI (Hong Kong) Limited +852 2891 8154 Fax +852 2834 0034 hongkong@ysi.com

YSI (China) Limited +86 10 5203 9675 Fax +86 10 5203 9679 heijing@ysi-china.com

YS1 Nanotech (Japan) +81 44 222 0009 Fax +81 44 221 1102 nanotech@ysi.com



ROX and Rapid Pulse are trademarks and FeaWatch, Pure Data for n Healthy Planet and Who's Minding the Planet? are registered trademarks of YSI Incorporated.

© Printed in USA 0107 E55-01

Senses with latted with the EUV lagstwere submitted in the EUV papersion like V314902B. It is the transitions on the parameters are been under the end of the end of the sense ranked from all survival, upper block of the TV meen submitted with the transition of th

YS1 incorporated Who's Minding the Planet?

| To overla a overlan bender opechicane | OXL & 600XLM Sensor Specification |
|---------------------------------------|-----------------------------------|
|---------------------------------------|-----------------------------------|

|                                                               | Range                                                       | Resolution                                                  | Accuracy                                                                                                |
|---------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Dissolved Oxygen<br>% Saturation<br>6562 Rapid Pulse" Sensor* | 0 to 500%                                                   | 0,1%                                                        | 0 to 200%: ±2% of reading or 2% air saturation,<br>whichever is greater; 200 to 500%: ±6% of<br>reading |
| Dissolved Oxygen<br>mg/L<br>6562 Rapid Pulse" Sensor*         | 0 to 50 mg/L                                                | 0.Q1 mg/L                                                   | 0 to 20 mg/L: ± 0.2 mg/L or 2% of reading,<br>whichever is greater; 20 to 50 mg/L: ±6% of<br>reading    |
| Conductivity"<br>6560 Sensor <sup>4</sup> ETV                 | 0 to 100 mS/cm                                              | 0.001 to 0.1 mS/cm<br>(range dependent)                     | ±0.5% of reading + 0,001 m\$/cm                                                                         |
| Salinity                                                      | 0 to 70 ppt                                                 | 0.01 ppt                                                    | ±1% of reading or 0.1 ppt, whichever is greater                                                         |
| Température<br>6560 Sensor*                                   | -5 to +50°C                                                 | 0.01°C                                                      | ±0.15°C                                                                                                 |
| pH<br>6561 Sensor* ETV                                        | Ø to 14 units                                               | 0.01 init                                                   | ±0.2 unit                                                                                               |
| ORP                                                           | +999 to +999 mV                                             | 0.1 mV                                                      | ±20 mV                                                                                                  |
| Depth & Level Medium<br>Shallow<br>Vented Level               | 0 to 200 ft, 61 m<br>0 to 30 ft, 9.1 m<br>0 to 30 ft, 9.1 m | 0.001 ft, 0.001 m<br>0.001 ft, 0.001 m<br>0.001 ft, 0,001 m | ±0,4 fl, ±0.12 m<br>±0,06 fl, ±0.02 m<br>±0,01 fl, 0.003 m                                              |

Report outputs of specific conductance (conductivity corrected to 25° C), resistivity, and total dissolved solids are
also provided. These values are automatically calculated from conductivity according to algorithms found in Shindard
Methods for the Examination of Water and Wastewater (ed 1989).

| YSI 600XL &                 | 600XLA                       | A Sonde Specifications                                                                                         |
|-----------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------|
| Medium                      |                              | Fresh, set or polluted water                                                                                   |
| Temperature Op              | eroting<br>Storage           | -5 to +50°C<br>-10 to +60°C                                                                                    |
| Communications              |                              | RS-232, SDI-12                                                                                                 |
| Software                    |                              | EcoWatch*                                                                                                      |
| Dimensions<br>400xL1 400xLM | Diameter<br>Length<br>Weight | 1.65 in, 4.19 cm   1.65 in, 4.9 cm<br>16 in, 40.6 cm   21.3 in, 54.1 cm<br>1.3 lbs, 0.59 kg   1.5 lbs, 0.69 kg |
| Power<br>Internal (600      | External<br>DXLM only)       | 12 V DC<br>4 AA-size alkaline batteries                                                                        |





## HI 98129 Combo pH/EC/TDS/Temperature Tester with Low Range EC



#### Description

The HI 98129 Combo waterproof tester offer high accuracy pH, EC/TDS and temperature measurements in a single tester! No more switching between meters for your routine measurements. The waterproof Combo (it even floats) has a large easy-to-read, dual-level LCD and automatic shut-off. pH and EC/TDS readings are automatically compensated for the effects of temperature (ATC). This technologically advanced tester has a replaceable pH electrode cartridge with an extendable cloth junction as well as an EC/TDS graphite electrode that resists contamination by salts and other substances. This gives these meters a greatly extended life. Your tester no longer needs to be thrown away when the pH sensor is exhausted.

The EC/TDS conversion factor is user selectable as is the temperature compensation coefficient (ß). Fast, efficient, accurate and portable, the Combo pH, EC/TDS and temperature tester brings you all the features you've asked for and more!

| Range                       | pН          | 0.00 to 14.00 pH                                   |
|-----------------------------|-------------|----------------------------------------------------|
| Range                       | EC          | 0 to 3999 µS/cm                                    |
| Range                       | TDS         | 0 to 2000 ppm                                      |
| Range                       | Temperature | 0.0 to 60.0°C / 32 to 140.0°F                      |
| Resolution                  | pН          | 0.01 pH                                            |
| Resolution                  | EC          | 1 µS/cm                                            |
| Resolution                  | TDS         | 1 ppm                                              |
| Resolution                  | Temperature | 0.1°C / 0.1°F                                      |
| Accuracy                    | pН          | ±0.05 pH                                           |
| Accuracy                    | EC/TDS      | ±2% F.S.                                           |
| Accuracy                    | Temperature | ±0.5°C / ±1°F                                      |
| Temperature                 |             | pH: automatic; EC/TDS: automatic with ß adjustable |
| Compensation                |             | from 0.0 to 2.4% / °C                              |
| Calibration                 | pН          | automatic, 1 or 2 points with 2 sets of memorized  |
|                             |             | buffers                                            |
|                             |             | (pH 4.01 / 7.01 / 10.01 or 4.01 / 6.86 / 9.18)     |
| Calibration                 | EC/TDS      | automatic, 1 point                                 |
| <b>TDS Conversion Facto</b> | br          | adjustable from 0.45 to 1.00                       |
| pH Electrode                |             | HI 73127 (replaceable; included)                   |
| Environment                 |             | 0 to 50°C (32 to 122°F); RH max 100%               |
| Battery Type / Life         |             | 4 x 1.5V / approx. 100 hours of continuous use;    |
|                             |             | auto-off after 8 minutes of non-use                |
| Dimensions                  |             | 163 x 40 x 26 mm (6.4 x 1.6 x 1.0")                |
| Weight                      |             | 100 g (3.5 oz.)                                    |

#### **Specifications**

(HACH) HQ30d Portable pH, Conductivity, Dissolved Oxygen (DO), ORP, and ISE Multi-Parameter Meter Product#: HQ30D53000000 Quantity USD Price: \$790.00 ★★★★★ 5/5 群 Read 1 miniow White a review # ollow this product Portable meter measures critical water quality parameters - without the need for multiple single imput channel for factble measurement of pH, Conductivity, Dissolved Ozygen (DO), BOD, ORP, Ammonia, Ammonium, Fluoride, Chloride, Sodium, and temperature - any IntelliCAL<sup>IM</sup> smart probe Intuitive tiser interface for simple operation and accurate results divided calibration and check standard routines reduce calibration errors. Stabilize on alerts and visual measurement lock Guided calibration and check standard routines reduce calibra ensure that you can trust the accuracy of the results. Trust your measurements - IntellIGAL<sup>IN</sup> smart probes store all cellbrations in the probe Calibration hitry allows quick and eavy drange out of probes whold re-calibration. The HOd<sup>III</sup> smart system records serial numbers, current calibration data, user ID, sample ID time, and data submatically in the data log for complete GLP transability Designed for demanding conditions Rugged, waterprool (IP67) meter provides worry-tree, reliable operation in lab or field environm Convenient kit includes everything you need to start testing Meter kit includes, 4 AA batteries, quick-start guide, user manual, and documentation CD Specifications AC and USB Operation optional Automatic Buffer Recognition IUPAC 1 679 4 005 7 000, 19 01 2, 12 45 DIN 1 09 4 65, 0323 User-defined custom buffer sets Baromatric Pressure Measurement For extomatic compensation of DO when using an LDO or LBOD probe Battery Requirements 4 44 Benchtop with stand BOD5/CBOD resolution Available when used with Hach WIMS BOD Manager software Cable resistance correction Digital - not needed Calibration curves display Calibration summary data logged and displayed Calibration intervals/Alerts/Reminder 2 hours to 7 days Compliance CE WEEE Conductivity Accuracy 2 0 5 % from (1µS/cm - 200 mS/cm) Conductivity measurement 5 different stability modes Conductivity Measurement Range 0 01 µS/cm to 200 mS/cm 0 01 µS/cm with 2 digits Conductivity resolution Custom Calibration Standards User-defined standard sets Download via USB connection to PC or flash stick. Automatically transfer entire data log or as readings are taken Data Export Data Memory 500 results Digital (intelligent) electrode inputs. 2 Dimensions (H x W x D) 7.8 in x 3 7 in x 1.4 in ( 197 mm x 95 mm x 36 mm) Display readings from the or how probes Simultaneous readings from two probes (4)44d ordy) pH pH, vH, vH semperature Conductivity Conductivity TUS, salindy reability ismperature LDO disadved oxyse, pressure, temperature LBOD disadved oxyse, pressure, temperature CRVR/dear, wH temperature Sodium, Sodium, mV, temperature Display Display Lock Function Continuous measurement or press to read mode available with averaging function for LDO measurement. and the second second service of the second second service of the second Display Type DO Measurement Range 0 01 to 20 mo/L (0 to 200%) DO Resolution 0 01 mg/L Fixed Buffer Selecton (UPAC standards (DIN 19265) or Technical buffer (DIN 19257) or 4-7-10 series or user M12 digital (1) for intelliCAL probes Inputs. Interface Languages 13\*\* Internal Data Storage 500 IP Rating (P67 English, Franch, German (talian Spanish, Danish, Dutch, Polish, Portuguese, Turkish, Sweedish, Czech, Russian Languages: mV Accuracy ±01mV mV Measurement at Stable Reading 5 (auto) stabilization settings mV Resolution 0 1 mV Operating Error Messages Text messages displayed Operating Humidity 90 % relative humidity (non-condensing) Operating Interface Keyped Operating Temperature 5 to 45 °C ORP Electrode Calibration Predefined ORP standards (including Zobell's sitution) Outputs USB to PC / flash stick PC Data Transfer Software Included pH Measurement at stable reading 5 stabilization settings Printer Optional accessory Salinity Resolution 0 01 ppl Warranty 3 years

Meter Cesing 1 meter submersion for 30 minutes (iP67)

0 74 lbs (0 335 kg)

Water Resisitance

Weight.

## 2100P and 2100P IS Portable Turbidimeter

#### Features and Benefits

#### Laboratory Quality in a Portable Unit

The Hach 2100P and 2100P IS Portable Turbidimeters offer a level of performance previously possible only with laboratory instruments. Microprocessor-controlled operation and Hach's unique Ratio<sup>™</sup> optics bring great accuracy, sensitivity, and reliability to field and in-plant testing.

#### **Two Models for Specific Requirements**

- 2100P Turbidimeter—Get fast, accurate turbidity testing in the field or the lab, over a wide range of samples. Compliant with USEPA Method 180.1 design criteria.
- 2100P IS Turbidimeter—Designed to meet international standards that mandate measurement using an LED light source.

#### **Two-detector Optical System**

The two-detector optical system compensates for color in the sample, light fluctuation, and stray light, enabling analysts to achieve laboratory-grade performance on a wide range of samples, even under difficult, onsite conditions.



The Hach 2100P and 2100P IS Portable Turbidimeters bring laboratory-level performance on-site, offering fast, accurate results and the ease-of-use analysts demand in the field. With a measurement range of 0 to 1000 NTU and a resolution of 0.01 NTU, the 2100P turbidimeter is ideal for regulatory monitoring, process control or field studies.



#### Specifications\*

|                        | 2100P                                                        | 2100P IS                                          |  |  |
|------------------------|--------------------------------------------------------------|---------------------------------------------------|--|--|
| Measurement Method     | Nephelometric Ratio                                          |                                                   |  |  |
| Regulatory             | Meets EPA Method 180.1                                       | Meets EPA Method 180.1 Meets EN ISO 7027          |  |  |
| Light Source           | Tungsten lamp                                                | Light-emitting diode (LED) @ 860 nm               |  |  |
| Range                  |                                                              |                                                   |  |  |
| Automatic Range Mode   | 0 to 1000 NTU                                                | 0 to 1000 FNU                                     |  |  |
| Manual Range Selection | 0 to 9.99, 0 to 99.9 and 0 to 1000 NTU                       | 0 to 9.99, 0 to 99.9 and 0 to 1000 FNU            |  |  |
| Accuracy               | ±2% of reading plus stray light                              |                                                   |  |  |
| Repeatability          | ±1% of reading, or 0.01 NTU, whichever is greater            | ±1% of reading, or 0.01 FNU, whichever is greater |  |  |
| Resolution             | 0.01 on lowest range                                         |                                                   |  |  |
| Signal Averaging       | Selectable on/off                                            | <i>y</i>                                          |  |  |
| Power Requirement      | 4 AA alkaline batteries or optional battery eliminator       |                                                   |  |  |
| Battery Life, Typical  | 300 tests with signal average mode off                       |                                                   |  |  |
|                        | 180 tests with signal average mode on                        |                                                   |  |  |
| Operating Temperature  | 0 to 50°C (32 to 122°F)                                      |                                                   |  |  |
| Sample Required        | 15 mL (0.5 oz.)                                              |                                                   |  |  |
| Sample Cells           | 60 x 25 mm (2.36 x 1 in.) borosilicate glass with screw caps |                                                   |  |  |
| Dimensions             | 22.2 x 9.5 x 7.9 cm (8.75 x 3.75 x 3.12 in.)                 |                                                   |  |  |
| Weight                 | 0.5 kg (1.1 lb.); shipping weight 2.7 kg (6 lb.)             | 0.5 kg (1.1 lb.); shipping weight 2.7 kg (6 lb.)  |  |  |
| Warranty               | 2 years                                                      | ······································            |  |  |

\*Specifications subject to change without notice.

DW = drinking water WW = wastewater municipal PW = pure water / power IW = industrial water E = environmental C = collections FB = food and beverage



## 2100Q and 2100Q is Portable Turbidimeter





#### Features and Benefits

#### **Easy Calibration and Verification**

Hach 2100Q and 2100Q *is* Portable Turbidimeters provide confidence your measurements are right every time. On-screen assisted calibration and verification save you time and ensure accuracy. With an easy-to-follow interface, complicated manuals are not needed to perform routine calibrations. Single-standard RapidCal<sup>™</sup> calibration offers a simplified solution for low level measurements.

#### Simple Data Transfer

Data transfer with the optional USB + Power Module is simple, flexible, and doesn't require additional software. All data can be transferred to the module and easily downloaded to your computer with a USB connection, providing superior data integrity and availability. With two different module options, you can customize connectivity and power to meet your unique needs.

#### Accurate for Rapidly Settling Samples

The Hach 2100Q Portable Turbidimeter incorporates an innovative Rapidly Settling Turbidity<sup>™</sup> mode to provide accurate, repeatable measurements for difficult to measure, rapidly settling samples. An exclusive algorithm that

calculates turbidity based on a series of automatic readings eliminates redundant measurements and estimating.

#### **Convenient Data Logging**

0

Up to 500 measurements are automatically stored in the instrument for easy access and backup. Stored information includes: date and time, operator ID, reading mode, sample ID, sample number, units, calibration time, calibration status, error messages and the result.

#### **Optical System for Precision in the Fleld**

The two-detector optical system compensates for color in the sample, light fluctuation, and stray light, enabling analysts to achieve laboratory-grade performance on a wide range of samples, even under difficult site conditions.

#### **Two Models for Specific Requirements**

- 2100Q Turbidimeter—Compliant with USEPA Method 180.1 design criteria.
- 2100Q is Turbidimeter—Compliant with ISO 7027 design criteria.

DW = drinking water WW = wastewater municipal PW = pure water / power IW = Industrial water E = environmental C = collections FB = food and beverage





### Specifications\*

Measurement Method

Ratio turbidimetric determination using a primary nephelometric light scatter signal (90°) to the transmitted light scatter signal.

Regulatory 2100Q: Meets EPA Method 180.1 2100Q is: Meets ISO 7027

Light Source 2100Q: Tungsten filament lamp 2100Q is: Light-emitting diode (LED) @ 860 nm

Range 0 to 1000 NTU (FNU)

Accuracy ±2% of reading plus stray light from 0 to 1000 NTU

Repeatability  $\pm 1\%$  of reading, or 0.01 NTU (FNU), whichever is greater

Resolution 0.01 NTU on lowest range

Stray Light <0.02 NTU (FNU)

Signal Averaging Selectable on/off

Detector Silicon photovoltaic

Reading Modes (user selectable) Normal (Push to Read) Signal Averaging Rapidly Settling Turbidity

Data Logger 500 records

*Power Requirement* 110-230 Vac, 50/60 Hz (with Power or USB+Power Module) 4 AA alkaline batteries Rechargeable NiMH (for use with USB+Power Module) Operating Conditions Temperature: 0 to 50°C (32 to 122°F) Relative Humidity: 0 to 90% @ 30°C, 0 to 80% @ 40°C, 0 to 70% @ 50°C, noncondensing

Storage Conditions -40 to 60°C (-40 to 140°F), instrument only

Languages English, French, German, Italian, Spanish, Portuguese (BR), Portuguese (PT), Bulgarian, Chinese, Czech, Danish, Dutch, Finnish, Greek, Hungarian, Japanese, Korean, Polish, Romanian, Russian, Slovenian, Swedish, Turkish

Interface Optional USB

Instrument Enclosure Rating IP67 (closed lid, battery compartment excluded)

Protection Class Power Supply: Class II

Certification CE certified

Sample Required 15 mL (0.3 oz.)

Sample Cells 60 x 25 mm (2.36 x 1 in.) borosilicate glass with screw cap

*Dimensions* 22.9 x 10.7 x 7.7 cm (9.0 x4.2 x 3.0 in.)

Weight 527 g (1.16 lb) without batteries 618 g (1.36 lb) with four AA alkaline batteries

*Warranty* 1 year

# Sondes: EXO1 EXO2





Cable connector, battery valve, and expansion port for an additional sensor



EXO2 sonde contains 6 universal sensor ports plus a central port for an anti-fouling wiper

**Battery Compartment** 

Cutaway: Reinforced internal structure



Anti-fouling wiper keeps sensors clear of biofouling and lengthens deployment times by 25%

Welded Titanium Housing



EXO1 sonde contains 4 universal sensor ports

## Instrument Specifications\*

| EXO1 Sonde                                     |                                                                                                                                                                                     |                                                                       |  |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| Ports                                          | 4 sensor ports<br>Peripheral port: 1 power communication                                                                                                                            | port                                                                  |  |
| Size                                           | Diameter: 4.70 cm (1.85 in)<br>Length: 64.77 cm (25.50 in)                                                                                                                          |                                                                       |  |
| Weight                                         | 1.42 kg (3.15 lbs) with 4 probes, guard a                                                                                                                                           | nd batteries installed                                                |  |
| EXO2 Sonde                                     | 3, , , , , , , , , , , , , , , , , , ,                                                                                                                                              |                                                                       |  |
| Ports                                          | 7 sensor ports (6 ports available when ce<br>Peripheral ports: 1 power communication                                                                                                | entral wiper used)<br>n port; 1 auxiliary expansion port              |  |
| Size                                           | Diameter: 7.62 cm (3.00 in)<br>Length: 71.10 cm (28.00 in)                                                                                                                          |                                                                       |  |
| Weight                                         | 3.60 kg (7.90 lbs) with 5 probes, guard a                                                                                                                                           | nd batteries installed                                                |  |
| Sondes                                         |                                                                                                                                                                                     |                                                                       |  |
| Operating Temperature                          | -5 to 50°C                                                                                                                                                                          |                                                                       |  |
| Storage Temperature                            | -20 to 80°C (except 0 to 60°C for pH and                                                                                                                                            | pH/ORP sensors)                                                       |  |
| Depth Rating                                   | 0 to 250 m (0 to 820 ft)                                                                                                                                                            |                                                                       |  |
| Communications                                 | Computer Interface: Bluetooth wireless t<br>Output Options: USB with signal output a                                                                                                | echnology, RS-485, USB<br>Idapter (SOA); RS-232 & SDI-12 with DCP-SOA |  |
| Sample Rate                                    | Up to 4 Hz                                                                                                                                                                          |                                                                       |  |
| Battery Life                                   | 90 days**                                                                                                                                                                           |                                                                       |  |
| Data Memory                                    | 512 MB total memory; >1,000,000 logge                                                                                                                                               | ed readings                                                           |  |
| Sensors                                        |                                                                                                                                                                                     | Calculated Parameters                                                 |  |
| Ammonium                                       | ORP                                                                                                                                                                                 | Salinity                                                              |  |
| Chloride                                       | рН                                                                                                                                                                                  | Specific Conductance                                                  |  |
| Conductivity                                   | Temperature                                                                                                                                                                         | Total Dissolved Solids                                                |  |
| Depth                                          | Total Algae (Chlorophyll + BGA-PC or PE)                                                                                                                                            | Total Suspended Solids                                                |  |
| Dissolved Oxygen                               | Turbidity                                                                                                                                                                           |                                                                       |  |
| Fluorescent Dissolved Organic<br>Matter (fDOM) | Vented Level                                                                                                                                                                        |                                                                       |  |
| Nitrate                                        |                                                                                                                                                                                     |                                                                       |  |
| EXO Handheld                                   |                                                                                                                                                                                     |                                                                       |  |
| Size                                           | Width: 12.00 cm (4.72 in)<br>Height: 25.00 cm (9.84 in)                                                                                                                             |                                                                       |  |
| Weight                                         | 0.71 kg (1.56 lbs) without batteries                                                                                                                                                |                                                                       |  |
| Operating System                               | Windows CE 5.0                                                                                                                                                                      |                                                                       |  |
| Operating Temperature                          | -10 to 50°C                                                                                                                                                                         |                                                                       |  |
| Storage Temperature                            | -20 to 80°C                                                                                                                                                                         |                                                                       |  |
| IP Rating                                      | IP-67                                                                                                                                                                               |                                                                       |  |
| Data Memory                                    | 2 GB total memory; >2,000,000 data sets                                                                                                                                             | S                                                                     |  |
| Accessories                                    |                                                                                                                                                                                     |                                                                       |  |
| Cables (vented and non-vented)                 | Flow cells                                                                                                                                                                          | Sonde/sensor guard                                                    |  |
| Carrying case                                  | KOR software                                                                                                                                                                        | Calibration cup                                                       |  |
| DCP Signal Output Adapter                      | USB Signal Output Adapter                                                                                                                                                           | Anti-fouling components                                               |  |
| Warranty                                       |                                                                                                                                                                                     |                                                                       |  |
| 3 months                                       | Replaceable reagent modules for ammo                                                                                                                                                | nium, chloride, and nitrate                                           |  |
| 1 Year                                         | Optical DO membranes and replaceable reagent moldules for pH and pH/ORP                                                                                                             |                                                                       |  |
| 2 Years                                        | Cables; sonde bulkheads; handheld; conductivity, temperature, depth, and optical sensors; electronics base for pH, pH/ORP, ammonium, chloride, and nitrate sensors; and accessories |                                                                       |  |

\* Specifications indicate typical performance and are subject to change.

Please check EXOwater.com for up-to-date information.

EXO Bluetooth modules comply with Part 15C of FCC Rules and have FCC, CE Mark and C-tick approval. Bluetooth-type approvals and regulations can be country specific. Check local laws and regulations to insure that the use of wireless products purchased from Xylem are in full compliance.

\*\* Typically 90 days at 20°C at 15-minute logging interval; temperature/conductivity, pH/ ORP, DO, and turbidity sensors installed on EXO1; or temperature/conductivity, pH/ORP, DO, total algae, and turbidity sensors installed with central wiper that rotates once per logging interval on EXO2. Battery life is heavily dependent on sensor configuration. 10

## Sensor Specifications\*

| Sensor                                                                                    | Range                                                                    | Accuracy*                                                                                                               | Response               | Resolution                                              |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------|
| Ammonium <sup>11</sup><br>(ammonia with pH sensor)                                        | 0 to 200 mg/L <sup>1</sup>                                               | ±10% of reading or 2 mg/L-N, w.i.g.                                                                                     | -                      | 0.01 mg/L                                               |
| Barometer                                                                                 | 375 to 825 mmHg                                                          | ±1.5 mmHg from 0 to 50°C                                                                                                | -                      | 0.1 mmHg                                                |
| Blue-green Algae<br>Phycocyanin (PC)<br>(part of Total Algae sensor)                      | 0 to 100 RFU;<br>0 to 100 µg/L PC                                        | Linearity: $R^2 > 0.999$ for serial dilution<br>of Rhodamine WT solution from 0 to<br>100 µg/mL PC equivalents          | T63<2 sec              | 0.01 RFU; 0.01 µg/L PC                                  |
| Blue-green Algae<br>Phycoerythrin (PE)<br>(part of Total Algae sensor)                    | 0 to 100 RFU;<br>0 to 280 µg/L PE                                        | Linearity: R <sup>2</sup> > 0.999 for serial dilution<br>of Rhodamine WT solution from 0 to<br>280 µg/mL PE equivalents | T63<2 sec              | 0.01 RFU; 0.01 μg/L PE                                  |
| Chloride <sup>11</sup>                                                                    | 0 to 1000 mg/L-Cl <sup>2</sup>                                           | ±15% of reading or 5 mg/L-Cl, w.i.g.                                                                                    | -                      | 0.01 mg/L                                               |
| Chlorophyll<br>(part of Total Algae sensor)                                               | 0 to 400 μg/L Chl;<br>0 to 100 RFU                                       | Linearity: R <sup>2</sup> > 0.999 for serial dilution<br>of Rhodamine WT solution from 0 to<br>400 µg/L Chl equivalents | T63<2 sec              | 0.01 μg/L Chl; 0.01<br>RFU                              |
| Conductivity <sup>3</sup>                                                                 | 0 to 200 mS/cm                                                           | 0 to 100: ±0.5% of reading or 0.001<br>mS/cm, w.i.g.; 100 to 200: ±1% of<br>reading                                     | T63<2 sec              | 0.0001 to 0.01 mS/cm<br>(range dependent)               |
|                                                                                           | 0 to 10 m (0 to 33 ft)                                                   | ±0.04% FS (±0.004 m or ±0.013 ft)                                                                                       |                        |                                                         |
| Depth ⁴<br>(non-vented)                                                                   | 0 to 100 m (0 to 328 ft)                                                 | ±0.04% FS (±0.04 m or ±0.13 ft)                                                                                         | T(2, 2) and            | 0.001 m (0.001 ft)                                      |
| (                                                                                         | 0 to 250 m (0 to 820 ft)                                                 | ±0.04% FS (±0.10 m or ±0.33 ft)                                                                                         | 103<2 Sec              | (auto-ranging)                                          |
| Vented Level                                                                              | 0 to 10 m (0 to 33 ft)                                                   | ±0.03% FS (±0.003 m or ±0.010 ft)                                                                                       |                        |                                                         |
| Dissolved Oxygen                                                                          | 0 to 500%<br>air saturation                                              | 0 to 200%: ±1% of reading or 1%<br>saturation, w.i.g.; 200 to 500%: ±5% of<br>reading ⁵                                 | T() (F 6               | 0.1% air saturation                                     |
| Optical                                                                                   | 0 to 50 mg/L                                                             | 0 to 20 mg/L: $\pm$ 0.1 mg/L or 1% of reading, w.i.g.; 20 to 50 mg/L: $\pm$ 5% of reading <sup>5</sup>                  | 103<5 Sec *            | 0.01 mg/L                                               |
| fDOM                                                                                      | 0 to 300 ppb Quinine<br>Sulfate equivalents<br>(QSE)                     | Linearity: R <sup>2</sup> > 0.999 for serial dilution<br>of 300 ppb QS solution<br>Detection Limit: 0.07 ppb QSE        | T63<2 sec              | 0.01 ppb QSE                                            |
| Nitrate <sup>11</sup>                                                                     | 0 to 200 mg/L-N <sup>1</sup>                                             | ±10% of reading or 2 mg/L-N, w.i.g.                                                                                     | -                      | 0.01 mg/L                                               |
| ORP                                                                                       | -999 to 999 mV                                                           | ±20 mV in Redox standard solutions                                                                                      | T63<5 sec 7            | 0.1 mV                                                  |
| рН                                                                                        | 0 to 14 units                                                            | ±0.1 pH units within ±10°C of calibra-<br>tion temp; ±0.2 pH units for entire<br>temp range <sup>8</sup>                | T63<3 sec <sup>9</sup> | 0.01 units                                              |
| Salinity (Calculated from<br>Conductivity and Temperature)                                | 0 to 70 ppt                                                              | ±1.0% of reading or 0.1 ppt, w.i.g.                                                                                     | T63<2 sec              | 0.01 ppt                                                |
| Specific Conductance<br>(Calculated from Cond. and Temp.)                                 | 0 to 200 mS/cm                                                           | ±0.5% of reading or .001 mS/cm,<br>w.i.g.                                                                               | -                      | 0.001, 0.01, 0.1 mS/cm<br>(auto-scaling)                |
| Temperature                                                                               | -5 to 50°C                                                               | -5 to 35°C: ±0.01°C <sup>10</sup><br>35 to 50°C: ±0.05°C <sup>10</sup>                                                  | T63<1 sec              | 0.001 °C                                                |
| Total Dissolved Solids (TDS)<br>(Calculated from Conductivity<br>and Temperature)         | 0 to 100,000 g/L<br>Cal constant range<br>0.30 to 1.00<br>(0.64 default) | Not Specified                                                                                                           | -                      | variable                                                |
| Total Suspended Solids (TSS)<br>(Calculated from Turbidity<br>and user reference samples) | 0 to 1500 mg/L                                                           | Not Specified                                                                                                           | T63<2 sec              | variable                                                |
| Turbidity <sup>11</sup>                                                                   | 0 to 4000 FNU                                                            | 0 to 999 FNU: 0.3 FNU or $\pm 2\%$ of reading, w.i.g.; 1000 to 4000 FNU: $\pm 5\%$ of reading $^{12}$                   | T63<2 sec              | 0 to 999 FNU: 0.01 FNU;<br>1000 to 4000 FNU: 0.1<br>FNU |

All sensors have a depth rating to 250 m (820 ft), except shallow and medium depth sensors and ISEs. EXO sensors are not backward compatible with 6-Series sondes.

\* Specifications indicate typical performance and are subject to change. Please check EXOwater.com for up-to-date information. Accuracy specification is attained immediately following calibration under controlled and stable environmental conditions. Performance in the natural environment may vary from quoted specification.

<sup>2</sup> 0-40°C <sup>1</sup> 0-30°C w.i.g. = whichever is greater

<sup>1</sup>0-30 C
 <sup>3</sup> Outputs of specific conductance (conductivity corrected to 25°C) and total dissolved solids are also provided. The values are automatically calculated from conductivity according to algorithms found in *Standard Methods for the Examination of Water and Wastewater* (Ed. 1989).

<sup>4</sup> Accuracy specifications apply to conductivity levels of 0 to 100,000 μS/cm.
 <sup>5</sup> Relative to calibration gases
 <sup>6</sup> When transferred from air-saturated water to stirred deaerated water
 <sup>7</sup> When transferred from water-saturated air to Zobell solution

<sup>8</sup> Within transferred from water-saturated air to Zoben solution
 <sup>8</sup> Within the environmental pH range of pH 4 to pH 10
 <sup>9</sup> On transfer from water-saturated air to rapidly stirred air-saturated water at a specific conductance of 800 µS/cm at 20°C; T63<5 seconds on transfer from water-saturated air to slowly-stirred air-saturated water.</li>
 <sup>10</sup> Temperature accuracy traceable to NIST standards
 <sup>11</sup> Celliperature accuracy traceable to the back of the standards

<sup>11</sup> Calibration: 1-, 2-, or 3-point, user-selectable <sup>12</sup> Specification is defined in AMCO-AEPA Standards



## FH950 Portable Velocity Meter with 20' Cable



 Product #:
 FH950.10020
 Quantity

 USD Price:
 \$4,585.00

 Ships within 2 weeks

#### Reduce manhours 50%

The step-by-step user interface simplifies programming, delivers real-time data, and downloads directly to PC allowing a single person to take the readings and eliminating post site visit manual data transfer from logbook to PC

Automatically calculates total discharge based on USGS and ISO methods Reduces time to manually calculate and likelihood of errors

#### Real-time velocity graphed on color display Visualize velocity trends quickly

Lowest maintenance solution on the market Electromagnetic velocity sensor with no moving parts never requires mechanical maintenance

#### Lightweight, rugged portable meter

Only 1.5 pounds

#### What's in the box

FH950.1 System Includes:

- Portable Velocity Meter
- Electromagnetic Sensor with 20' cable
- Fabric Carrying Case
- Adjustable Meter Rod Mount
- Universal Sensor Mount
- Battery Charger with Domestic/International Plug Adapters
- USB Cable
- Lanyard
- Sensor Screw Kit
- Absorbent Wipe

#### Specifications

| Accuracy 2:                  | $\pm$ 2% of reading $\pm$ 0.05 ft/s ( $\pm$ 0.015 m/s) through the range of 0 to 10 ft/s (0 to 3.04 ms/s); $\pm$ 4% of reading from 10 to 16 ft/s (3.04 to 4.87 m/s) |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Battery Life:                | heavy typical day use; 68°F (20°C)                                                                                                                                   |
| Display: LCD:                | Color, LCD 3.5 QVGA transflective (readable in direct sunlight)                                                                                                      |
| Keypad:                      | Alpha-numerica                                                                                                                                                       |
| Operating Temperature Range: | -20 to 55 °C                                                                                                                                                         |
| Range:                       | to ft/s                                                                                                                                                              |
| Resolution:                  | Measurement Resolution - <10: 0.001; <100: 0.01; >100: 0.1                                                                                                           |
| Storage Conditions:          | -20 °C to 60 °C                                                                                                                                                      |
|                              |                                                                                                                                                                      |

Appendix D

| Stream:                       | Collectors                | s:              |                 |                 |    |
|-------------------------------|---------------------------|-----------------|-----------------|-----------------|----|
| Location:                     | Date:                     |                 |                 |                 |    |
| RM:                           | Time:                     |                 |                 |                 |    |
| Lat/Long:                     |                           |                 |                 |                 |    |
| Number of Rocks:              | Total Area Scraped:       | cm <sup>2</sup> |                 |                 |    |
|                               |                           |                 | Diameter to Are | ea Conversion   |    |
| Diameter of individual scrape | Area of individual scrape |                 | Diameter (cm)   | Area (cm2)      |    |
| 1                             | 1                         |                 | 1.6             | 2.011           |    |
| 2                             | 2                         |                 | 1.7             | 2.27            |    |
| 3                             | 3                         |                 | 1.8             | 2.545           |    |
| 4                             | 4                         |                 | 1.9             | 2.835           |    |
| 5                             | 5                         |                 | 2.0             | 3.142           |    |
| 6                             | 6                         |                 | 2.1             | 3.464           |    |
| 7                             | 7                         |                 | 2.2             | 3.801           |    |
| 8                             | 8                         |                 | 2.3             | 4.155           |    |
| 9                             | 9                         |                 |                 |                 |    |
| 10                            | 10                        |                 | Total Sample V  | olume           | ml |
| 11                            | 11                        | Filter 1        | LABLynx ID      |                 |    |
| 12                            | 12                        |                 | Vol             | _ml             |    |
| 13                            | 13                        |                 |                 |                 |    |
| 14                            | 14                        | Filter 2        | LABLynx ID      |                 |    |
| 15                            | 15                        |                 | Vol             | _ml             |    |
| 16                            | 16                        |                 |                 |                 |    |
| 17                            | 17                        | Filter 3        | LABLynx ID      |                 |    |
| 18                            | 18                        |                 | Vol             | _ml             |    |
| 19                            | 19                        |                 |                 |                 |    |
| 20                            | 20                        |                 |                 |                 |    |
| 21                            | 21                        | ۱               | Nater Column C  | hlorophyll Samp | le |
| 22                            | 22                        | Filter 1        | LABLynx ID      |                 |    |
| 23                            | 23                        |                 | Vol             | _ml             |    |
| 24                            | 24                        |                 |                 |                 |    |
| 25                            | 25                        | Filter 2        | LABLynx ID      |                 |    |
|                               | Total:                    |                 | Vol             | _ml             |    |
|                               |                           | Filter 3        | LABLynx ID      |                 |    |
|                               |                           |                 | Vol             | _ml             |    |
|                               |                           | L               |                 |                 |    |
|                               |                           |                 |                 |                 |    |

## NEORSD Chlorophyll a Sampling Field Sheet

| Flow:                         | None     | Low         | Normal        | Elevated     | High  |
|-------------------------------|----------|-------------|---------------|--------------|-------|
| <b>Turbidity:</b><br>*Explain | Clear    | Low         | Moderate*     | High*        |       |
| Sky:                          | Overcast | Cloudy      | Partly Cloudy | Mostly Clear | Clear |
| Canopy:                       | Open     | Mostly Open | Partly Closed | Closed       |       |
| Riparian                      | None     | Narrow L R  | Moderate L R  | Wide L R     |       |

| Downstream Channel Direction | Record two most predominate substrates with an X, and check |  |  |  |
|------------------------------|-------------------------------------------------------------|--|--|--|
| 0° / 30°                     | all present.                                                |  |  |  |
| 330° N 50                    |                                                             |  |  |  |
| 60°                          | Riffle Run Reach                                            |  |  |  |
| 3005                         | Bouldel/Slabs                                               |  |  |  |
|                              | Boulder/Slabs                                               |  |  |  |
| 270° – W E – 90°             | Cobble                                                      |  |  |  |
|                              | Gravel                                                      |  |  |  |
| 4                            | Sand                                                        |  |  |  |
| 240° 120°                    | Silt                                                        |  |  |  |
|                              | Hardpan                                                     |  |  |  |
| 210° 7 150°                  | Detritus                                                    |  |  |  |
| 180°                         |                                                             |  |  |  |
| Clinometer                   | Substrate Origin                                            |  |  |  |
|                              | LimestoneTillsRip-rap                                       |  |  |  |
| Left Bank°                   | SandstoneShaleWetlands                                      |  |  |  |
| Right Bank°                  | LacustrineHardpanCoal Fines                                 |  |  |  |
| l eft Bank °                 | Silt                                                        |  |  |  |
| Right Bank °                 | Heavy Moderate Normal None                                  |  |  |  |
|                              |                                                             |  |  |  |
| Left Bank°                   | Embeddedness                                                |  |  |  |
| Right Bank°                  | ExtensiveModerateNormalNone                                 |  |  |  |
| Stream Widths                |                                                             |  |  |  |
| mmm                          |                                                             |  |  |  |
|                              |                                                             |  |  |  |
| Notes:                       |                                                             |  |  |  |

Length of Reach: \_\_\_\_\_m

Stream Drawing

Appendix E

# COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

BUREAU OF LABORATORIES LABORATORY ACCREDITATION PROGRAM

Certifies That

68-03670

Northeast Ohio Regional Sewer District Analytical Services 4747 East 49th Street, Cuyahoga Heights, OH 44125

Having duly met the requirement of The act of June 29, 2002 (P.L. 596, No. 90) dealing with Environmental Laboratories Accreditation (27 Pa. C.S. §§4104-4113) and the National Environmental Laboratory Accreditation Program Standard

is hereby approved as an

## **Accredited Laboratory**

As more fully described in the attached Scope of Accreditation

Expiration Date: 11/30/2016 Certificate Number: 009

liaven alger

Aaren S. Alger, Chief Laboratory Accreditation Program Bureau of Laboratories



Continued accreditation status depends on successful ongoing participation in the program Certificate not transferable Surrender upon revocation To be conspicuously displayed at the Laboratory Not valid unless accompanied by a valid Scope of Accreditation Shall not be used to imply endorsement by the Commonwealth of Pennsylvania Customers are urged to verify the laboratory's current accreditation status PA DEP is a NELAP recognized accreditation body





Attached to Certificate of Accreditation 009-002 expiration date November 30, 2016. This listing of accredited analytes should be used only when associated with a valid certificate of accreditation.

DEP Laboratory ID: 68-03670 EPA Lab Code: OH00300 TNI Code: (216) 641-6000 PADWIS ID:

## Northeast Ohio Regional Sewer District Analytical Services 4747 East 49th Street

Cuyahoga Heights, OH 44125

#### Matrix: Drinking Water

| Method    | Revision | Analyte                      | Accreditation Type | Primary | Effective Date |
|-----------|----------|------------------------------|--------------------|---------|----------------|
| EPA 1603  |          | E. coli (Enumeration)        | NELAP              | PA      | 12/16/2015     |
| SM 9222 B |          | Total coliform (Enumeration) | NELAP              | PA      | 12/16/2015     |

#### Matrix: Non-Potable Water

| Method        | Revision | Analyte                    | Accreditation Type | Primary | Effective Date |
|---------------|----------|----------------------------|--------------------|---------|----------------|
| ASTM D4839-03 |          | Total organic carbon (TOC) | NELAP              | PA      | 11/25/2014     |
| EPA 1000.0    |          | Pimephales promelas        | NELAP              | PA      | 1/8/2009       |
| EPA 1002.0    |          | Ceriodaphnia dubia         | NELAP              | PA      | 1/8/2009       |
| EPA 160.4     |          | Residue, volatile          | NELAP              | PA      | 10/22/2008     |
| EPA 1600      |          | Enterococci                | NELAP              | PA      | 11/22/2010     |
| EPA 1603      |          | E. coli (Enumeration)      | NELAP              | PA      | 11/29/2007     |
| EPA 1631      | Е        | Mercury                    | NELAP              | PA      | 3/31/2008      |
| EPA 1664      | Α        | Oil and grease             | NELAP              | PA      | 4/27/2015      |
| EPA 180.1     |          | Turbidity                  | NELAP              | PA      | 12/31/2007     |
| EPA 200.7     | 4.4      | Aluminum                   | NELAP              | PA      | 11/29/2007     |
| EPA 200.7     | 4.4      | Antimony                   | NELAP              | PA      | 11/29/2007     |
| EPA 200.7     | 4.4      | Arsenic                    | NELAP              | PA      | 11/29/2007     |
| EPA 200.7     | 4.4      | Barium                     | NELAP              | PA      | 11/29/2007     |
| EPA 200.7     | 4.4      | Beryllium                  | NELAP              | PA      | 11/29/2007     |
| EPA 200.7     | 4.4      | Cadmium                    | NELAP              | PA      | 11/29/2007     |
| EPA 200.7     | 4.4      | Calcium                    | NELAP              | PA      | 11/29/2007     |
| EPA 200.7     | 4.4      | Chromium                   | NELAP              | PA      | 11/29/2007     |
| EPA 200.7     | 4.4      | Cobalt                     | NELAP              | PA      | 11/29/2007     |
| EPA 200.7     | 4.4      | Copper                     | NELAP              | PA      | 12/31/2007     |
| EPA 200.7     | 4.4      | Iron                       | NELAP              | PA      | 11/29/2007     |
| EPA 200.7     | 4.4      | Lead                       | NELAP              | PA      | 11/29/2007     |
| EPA 200.7     | 4.4      | Magnesium                  | NELAP              | PA      | 11/17/2010     |
| EPA 200.7     | 4.4      | Manganese                  | NELAP              | PA      | 11/29/2007     |
| EPA 200.7     | 4.4      | Molybdenum                 | NELAP              | PA      | 11/29/2007     |
| EPA 200.7     | 4.4      | Nickel                     | NELAP              | PA      | 11/29/2007     |
| EPA 200.7     | 4.4      | Potassium                  | NELAP              | PA      | 12/31/2007     |
| EPA 200.7     | 4.4      | Selenium                   | NELAP              | PA      | 11/29/2007     |
| EPA 200.7     | 4.4      | Silver                     | NELAP              | PA      | 11/29/2007     |
| EPA 200.7     | 4.4      | Sodium                     | NELAP              | PA      | 12/31/2007     |
| EPA 200.7     | 4.4      | Strontium                  | NELAP              | PA      | 4/27/2015      |
| EPA 200.7     | 4.4      | Thallium                   | NELAP              | PA      | 4/15/2014      |
| EPA 200.7     | 4.4      | Tin                        | NELAP              | PA      | 11/29/2007     |

Gaun alger

The Pennsylvania Department of Environmental Protection Laboratory Accreditation Program is a NELAP recognized

Accreditation Body. Customers are urged to verify the laboratory's current accreditation standing.





Attached to Certificate of Accreditation 009-002 expiration date November 30, 2016. This listing of accredited analytes

should be used only when associated with a valid certificate of accreditation.

TNI Code:

DEP Laboratory ID: 68-03670 PADWIS ID: EPA Lab Code: OH00300

(216) 641-6000

### Matrix: Non-Potable Water

| Method    | Revision | Analyte                               | Accreditation Type | Primary | Effective Date |
|-----------|----------|---------------------------------------|--------------------|---------|----------------|
| EPA 200.7 | 4.4      | Titanium                              | NELAP              | PA      | 11/29/2007     |
| EPA 200.7 | 4.4      | Vanadium                              | NELAP              | PA      | 11/29/2007     |
| EPA 200.7 | 4.4      | Zinc                                  | NELAP              | PA      | 12/31/2007     |
| EPA 200.8 | 5.4      | Aluminum                              | NELAP              | PA      | 4/27/2015      |
| EPA 200.8 | 5.4      | Antimony                              | NELAP              | PA      | 4/27/2015      |
| EPA 200.8 | 5.4      | Arsenic                               | NELAP              | PA      | 4/27/2015      |
| EPA 200.8 | 5.4      | Barium                                | NELAP              | PA      | 4/27/2015      |
| EPA 200.8 | 5.4      | Beryllium                             | NELAP              | PA      | 4/27/2015      |
| EPA 200.8 | 5.4      | Cadmium                               | NELAP              | PA      | 4/27/2015      |
| EPA 200.8 | 5.4      | Calcium                               | NELAP              | PA      | 12/1/2015      |
| EPA 200.8 | 5.4      | Chromium                              | NELAP              | PA      | 4/27/2015      |
| EPA 200.8 | 5.4      | Cobalt                                | NELAP              | PA      | 4/27/2015      |
| EPA 200.8 | 5.4      | Copper                                | NELAP              | PA      | 4/27/2015      |
| EPA 200.8 | 5.4      | Iron                                  | NELAP              | PA      | 8/12/2015      |
| EPA 200.8 | 5.4      | Lead                                  | NELAP              | PA      | 4/27/2015      |
| EPA 200.8 | 5.4      | Magnesium                             | NELAP              | PA      | 8/12/2015      |
| EPA 200.8 | 5.4      | Manganese                             | NELAP              | PA      | 4/27/2015      |
| EPA 200.8 | 5.4      | Molybdenum                            | NELAP              | PA      | 4/27/2015      |
| EPA 200.8 | 5.4      | Nickel                                | NELAP              | PA      | 4/27/2015      |
| EPA 200.8 | 5.4      | Potassium                             | NELAP              | PA      | 12/1/2015      |
| EPA 200.8 | 5.4      | Selenium                              | NELAP              | PA      | 4/27/2015      |
| EPA 200.8 | 5.4      | Silver                                | NELAP              | PA      | 4/27/2015      |
| EPA 200.8 | 5.4      | Sodium                                | NELAP              | PA      | 12/1/2015      |
| EPA 200.8 | 5.4      | Strontium                             | NELAP              | PA      | 12/1/2015      |
| EPA 200.8 | 5.4      | Thallium                              | NELAP              | PA      | 4/27/2015      |
| EPA 200.8 | 5.4      | Tin                                   | NELAP              | PA      | 8/12/2015      |
| EPA 200.8 | 5.4      | Titanium                              | NELAP              | PA      | 8/12/2015      |
| EPA 200.8 | 5.4      | Vanadium                              | NELAP              | PA      | 4/27/2015      |
| EPA 200.8 | 5.4      | Zinc                                  | NELAP              | PA      | 4/27/2015      |
| EPA 245.1 | 3.0      | Mercury                               | NELAP              | PA      | 11/29/2007     |
| EPA 300.0 | 2.1      | Bromide                               | NELAP              | PA      | 11/22/2010     |
| EPA 300.0 | 2.1      | Chloride                              | NELAP              | PA      | 11/22/2010     |
| EPA 300.0 | 2.1      | Fluoride                              | NELAP              | PA      | 11/22/2010     |
| EPA 300.0 | 2.1      | Nitrate as N                          | NELAP              | PA      | 11/22/2010     |
| EPA 300.0 | 2.1      | Nitrite as N                          | NELAP              | PA      | 4/27/2015      |
| EPA 300.0 | 2.1      | Orthophosphate as P                   | NELAP              | PA      | 11/22/2010     |
| EPA 300.0 | 2.1      | Sulfate                               | NELAP              | PA      | 11/22/2010     |
| EPA 3005  | Α        | Preconcentration under acid           | NELAP              | PA      | 11/29/2007     |
| EPA 3010  | А        | Hot plate acid digestion (HNO3 + HCl) | NELAP              | PA      | 11/29/2007     |
| EPA 3015  |          | Microwave-assisted acid digestion     | NELAP              | PA      | 11/29/2007     |
| EPA 310.2 |          | Alkalinity as CaCO3                   | NELAP              | PA      | 9/20/2012      |
| EPA 350.1 |          | Ammonia as N                          | NELAP              | PA      | 11/29/2007     |
| EPA 351.2 |          | Kjeldahl nitrogen, total (TKN)        | NELAP              | PA      | 11/17/2010     |
| EPA 353.2 |          | Nitrate as N                          | NELAP              | PA      | 11/29/2007     |
| EPA 353.2 |          | Total nitrate-nitrite                 | NELAP              | PA      | 11/17/2010     |

Gaven alger

The Pennsylvania Department of Environmental Protection Laboratory Accreditation Program is a NELAP recognized Accreditation Body. Customers are urged to verify the laboratory's current accreditation standing.





Attached to Certificate of Accreditation 009-002 expiration date November 30, 2016. This listing of accredited analytes

should be used only when associated with a valid certificate of accreditation.

DEP Laboratory ID: 68-03670 PADWIS ID: EPA Lab Code: OH00300 TNI Code:

(216) 641-6000

#### Matrix: Non-Potable Water

| Method              | Revision | Analyte                      | Accreditation Type | Primary | Effective Date |
|---------------------|----------|------------------------------|--------------------|---------|----------------|
| EPA 365.1           |          | Orthophosphate as P          | NELAP              | PA      | 12/1/2015      |
| EPA 365.1           |          | Phosphorus, total            | NELAP              | PA      | 10/22/2008     |
| EPA 410.4           |          | Chemical oxygen demand (COD) | NELAP              | PA      | 11/29/2007     |
| EPA 420.4           |          | Total phenolics              | NELAP              | PA      | 11/17/2010     |
| EPA 445             |          | Chlorophyll A                | NELAP              | PA      | 11/22/2010     |
| EPA 6010            |          | Aluminum                     | NELAP              | PA      | 11/29/2007     |
| EPA 6010            |          | Antimony                     | NELAP              | PA      | 11/29/2007     |
| EPA 6010            |          | Arsenic                      | NELAP              | PA      | 11/29/2007     |
| EPA 6010            |          | Barium                       | NELAP              | PA      | 11/29/2007     |
| EPA 6010            |          | Beryllium                    | NELAP              | PA      | 11/29/2007     |
| EPA 6010            |          | Cadmium                      | NELAP              | PA      | 11/29/2007     |
| EPA 6010            |          | Calcium                      | NELAP              | PA      | 11/29/2007     |
| EPA 6010            |          | Chromium                     | NELAP              | PA      | 11/29/2007     |
| EPA 6010            |          | Cobalt                       | NELAP              | PA      | 11/29/2007     |
| EPA 6010            |          | Copper                       | NELAP              | PA      | 12/31/2007     |
| EPA 6010            |          | lron                         | NELAP              | PA      | 11/29/2007     |
| EPA 6010            |          | Lead                         | NELAP              | PA      | 11/29/2007     |
| EPA 6010            |          | Magnesium                    | NELAP              | PA      | 11/29/2007     |
| EPA 6010            |          | Manganese                    | NELAP              | PA      | 11/29/2007     |
| EPA 6010            |          | Molybdenum                   | NELAP              | PA      | 11/29/2007     |
| EPA 6010            |          | Nickel                       | NELAP              | PA      | 11/29/2007     |
| EPA 6010            |          | Potassium                    | NELAP              | PA      | 12/31/2007     |
| EPA 6010            |          | Selenium                     | NELAP              | PA      | 11/29/2007     |
| EPA 6010            |          | Silver                       | NELAP              | PA      | 11/29/2007     |
| EPA 6010            |          | Sodium                       | NELAP              | PA      | 12/31/2007     |
| EPA 6010            |          | Thallium                     | NELAP              | PA      | 4/15/2014      |
| EPA 6010            |          | Tin                          | NELAP              | PA      | 11/29/2007     |
| EPA 6010            |          | Titanium                     | NELAP              | PA      | 11/29/2007     |
| EPA 6010            |          | Vanadium                     | NELAP              | PA      | 11/29/2007     |
| EPA 6010            |          | Zinc                         | NELAP              | PA      | 12/31/2007     |
| EPA 7470            |          | Mercury                      | NELAP              | PA      | 11/29/2007     |
| Enterolert          |          | Enterococci (Enumeration)    | NELAP              | PA      | 11/22/2010     |
| Lachat 10-204-00-1X |          | Cyanide                      | NELAP              | PA      | 12/1/2015      |
| OIA 1677            |          | Available cyanide            | NELAP              | PA      | 11/29/2007     |
| SM 2540 B           |          | Residue, total               | NELAP              | PA      | 11/29/2007     |
| SM 2540 C           |          | Residue, filterable (TDS)    | NELAP              | PA      | 11/29/2007     |
| SM 2540 D           |          | Residue, nonfilterable (TSS) | NELAP              | PA      | 11/29/2007     |
| SM 2540 F           |          | Residue, settleable          | NELAP              | PA      | 11/29/2007     |
| SM 2550 B           |          | Temperature, deg. C          | NELAP              | PA      | 10/22/2008     |
| SM 3500-Cr B        | 20-22    | Chromium VI                  | NELAP              | PA      | 11/29/2007     |
| SM 4500-CN- G       |          | Amenable cyanide             | NELAP              | PA      | 11/29/2007     |
| SM 4500-Cl E        |          | Total residual chlorine      | NELAP              | PA      | 11/29/2007     |
| SM 4500-Cl- C       |          | Chloride                     | NELAP              | PA      | 11/19/2012     |
| SM 4500-H+ B        |          | pН                           | NELAP              | PA      | 11/29/2007     |
| SM 4500-NO2- B      |          | Nitrite as N                 | NELAP              | PA      | 11/29/2007     |
|                     |          |                              |                    |         |                |

Gaven alger

The Pennsylvania Department of Environmental Protection Laboratory Accreditation Program is a NELAP recognized Accreditation Body. Customers are urged to verify the laboratory's current accreditation standing.





Attached to Certificate of Accreditation 009-002 expiration date November 30, 2016. This listing of accredited analytes

should be used only when associated with a valid certificate of accreditation.

DEP Laboratory ID: 68-03670 EPA Lab Code: OH00 PADWIS ID:

EPA Lab Code: OH00300 TNI Code:

(216) 641-6000

#### Matrix: Non-Potable Water

| Method                        | Revision | Analyte                                    | Accreditation Type | Primary | Effective Date |
|-------------------------------|----------|--------------------------------------------|--------------------|---------|----------------|
| SM 4500-Norg B                |          | Kjeldahl nitrogen, total (TKN)             | NELAP              | PA      | 10/22/2008     |
| SM 4500-P B                   |          | Preliminary treatment of phosphate samples | NELAP              | PA      | 11/13/2013     |
| SM 4500-P E                   |          | Orthophosphate as P                        | NELAP              | PA      | 11/13/2013     |
| SM 5210 B                     |          | Biochemical oxygen demand (BOD)            | NELAP              | PA      | 11/29/2007     |
| SM 5210 B                     |          | Carbonaceous BOD (CBOD)                    | NELAP              | PA      | 11/29/2007     |
| SM 9222 D                     |          | Fecal coliform (Enumeration)               | NELAP              | PA      | 11/29/2007     |
| SM 9223 Colilert MPN or<br>QT |          | E. coli (Enumeration)                      | NELAP              | PA      | 11/29/2007     |
| SM 9223 Colilert MPN or<br>QT |          | Total coliform (Enumeration)               | NELAP              | PA      | 11/22/2010     |

### Matrix: Solid and Chemical Materials

| Method    | Revision | Analyte                                   | Accreditation Type | Primary | Effective Date |
|-----------|----------|-------------------------------------------|--------------------|---------|----------------|
| EPA 245.1 | 3.0      | Mercury                                   | NELAP              | PA      | 11/22/2010     |
| EPA 3051  |          | Microwave digestion of solids (HNO3 only) | NELAP              | PA      | 11/17/2010     |
| EPA 350.1 |          | Ammonia as N                              | NELAP              | PA      | 4/27/2015      |
| EPA 351.2 |          | Kjeldahl nitrogen, total (TKN)            | NELAP              | PA      | 4/27/2015      |
| EPA 365.1 |          | Phosphorus, total                         | NELAP              | PA      | 4/27/2015      |
| EPA 6010  |          | Aluminum                                  | NELAP              | PA      | 11/22/2010     |
| EPA 6010  |          | Antimony                                  | NELAP              | PA      | 11/13/2013     |
| EPA 6010  |          | Arsenic                                   | NELAP              | PA      | 11/22/2010     |
| EPA 6010  |          | Barium                                    | NELAP              | PA      | 11/22/2010     |
| EPA 6010  |          | Beryllium                                 | NELAP              | PA      | 11/22/2010     |
| EPA 6010  |          | Cadmium                                   | NELAP              | PA      | 11/22/2010     |
| EPA 6010  |          | Calcium                                   | NELAP              | PA      | 11/22/2010     |
| EPA 6010  |          | Chromium                                  | NELAP              | PA      | 11/22/2010     |
| EPA 6010  |          | Cobalt                                    | NELAP              | PA      | 11/22/2010     |
| EPA 6010  |          | Copper                                    | NELAP              | PA      | 11/22/2010     |
| EPA 6010  |          | lron                                      | NELAP              | PA      | 11/22/2010     |
| EPA 6010  |          | Lead                                      | NELAP              | PA      | 11/22/2010     |
| EPA 6010  |          | Magnesium                                 | NELAP              | PA      | 11/22/2010     |
| EPA 6010  |          | Manganese                                 | NELAP              | PA      | 11/22/2010     |
| EPA 6010  | В        | Metals by ICP/AES                         | NELAP              | PA      | 1/22/2013      |
| EPA 6010  |          | Molybdenum                                | NELAP              | PA      | 11/22/2010     |
| EPA 6010  |          | Nickel                                    | NELAP              | PA      | 11/22/2010     |
| EPA 6010  |          | Potassium                                 | NELAP              | PA      | 11/22/2010     |
| EPA 6010  |          | Selenium                                  | NELAP              | PA      | 11/22/2010     |
| EPA 6010  |          | Silver                                    | NELAP              | PA      | 11/22/2010     |
| EPA 6010  |          | Sodium                                    | NELAP              | PA      | 11/22/2010     |
| EPA 6010  |          | Strontium                                 | NELAP              | PA      | 4/27/2015      |
| EPA 6010  |          | Thallium                                  | NELAP              | PA      | 11/22/2010     |
| EPA 6010  |          | Tin                                       | NELAP              | PA      | 4/15/2013      |
| EPA 6010  |          | Titanium                                  | NELAP              | PA      | 11/22/2010     |
| EPA 6010  |          | Vanadium                                  | NELAP              | PA      | 11/22/2010     |

Gaven alger

The Pennsylvania Department of Environmental Protection Laboratory Accreditation Program is a NELAP recognized Accreditation Body. Customers are urged to verify the laboratory's current accreditation standing.





Attached to Certificate of Accreditation 009-002 expiration date November 30, 2016. This listing of accredited analytes should be used only when associated with a valid certificate of accreditation.

DEP Laboratory ID: 68-03670 PADWIS ID: EPA Lab Code: OH00300 TNI Code:

(216) 641-6000

#### Matrix: Solid and Chemical Materials

| Method   | Revision Analyte | Accreditation 7 | ype Primary | Effective Date |
|----------|------------------|-----------------|-------------|----------------|
| EPA 6010 | Zinc             | NELAP           | PA          | 11/22/2010     |

Gaven alger

The Pennsylvania Department of Environmental Protection Laboratory Accreditation Program is a NELAP recognized Accreditation Body. Customers are urged to verify the laboratory's current accreditation standing.

Appendix F



February 16, 2016

Mr. John Rhoades Supervisor of Environmental Assessment Northeast Ohio Regional Sewer District 4747 East 49<sup>th</sup> Street Cuyahoga Heights, Ohio 44125

Dear Mr. Rhoades:

This letter is to acknowledge that I am responsible for assisting the Northeast Ohio Regional Sewer District's Water Quality and Industrial Surveillance Division in conducting stream habitat assessments using the Qualitative Habitat Evaluation Index for the 2016 Big Creek, Cuyahoga River, Doan Brook, Euclid Creek, Hemlock Creek, Mill Creek, and West Creek Environmental Monitoring Project Study Plans.

It is understood that an Ohio Environmental Protection Agency Level 3 Qualified Data Collector Certification for Stream Habitat Assessment is required to perform these tasks and that I am responsible for maintaining my Level 3 QDC Certification during the term of these Study Plans.

In addition, I have not been convicted nor pleaded guilty to a Violation of Section 2911.21 of the Revised Code (criminal trespass) or a substantially similar municipal ordinance within the previous five years.

Sincerely,

Jonathan Brauer Stormwater Inspector Northeast Ohio Regional Sewer District 4747 East 49<sup>th</sup> Street Cuyahoga Heights, Ohio 44125

Appendix G





Division of Wildlife Headquarters 2045 Morse Road. Bldg. G Columbus, Ohio 43229-6693 1-800-WILDLIFE

Ohio Department of Natural Resources

WILD ANIMAL PERMIT: 17-258 SCIENTIFIC COLLECTION

DATE ISSUED 3/17/2016

SETH HOTHEM NEORSD 4747 EAST 49TH ST. CUYAHOGA HEIGHTS, OH 44125-1

Others authorized on permit

YES (SEE ATTACHMENT)

Chief, Division of Wildlife: Raymond W. Petering

is hereby granted permission to take, possess, and transport at any time and in any manner specimens of wild animals, subject to the conditions and restrictions listed below or any documents accompanying this permit. This permit, unless revoked earlier by the Chief, Division of Wildlife, is effective from:

#### 3/16/2016 to: 3/15/2017

The Chief of the Division of Wildlife will not issue permits for Dangerous Wild Animal (DWA) species (ORC 935.01 except native DWA, required for specific projects. The permit issued by the Chief does not relieve the permittee of any responsibility to obtain a permit pursuant to R.C. Chapter 935 except as specified for the animals and purposes permitted herein. The permittee must adhere to all additional requirements under R.C. Chapter 935.

#### THIS PERMIT IS RESTRICTED AS FOLLOWS:

1. Permittee may collect fish, macroinvertebrates, amphibians and mussels for survey and inventory purposes. All endangered species are to be released at site of capture. Only DOW approved mussel surveyors may work with mussels. Relic mussel shells may be collected and taken to NEORSD. No more than two specimens per species.

2. Common species of fish may be collected and displayed for educational purposes. Fish must be displayed at NEORSD or the Greater Cleveland Aquarium or other public educational facility. They may not be maintained at a private residence. Sport fish >6 in. must be immediately released.

3. Permittee must follow guidelines of the Biosecurity Protocol for Herpetofauna Field Work included with permit.

4. Permittee must consult with Wildlife's Stream Conservation and Environmental Assessment Unit (SCEA) prior to conducting any wild animal work

associated with compliance requirements of the Clean Water Act (CWA) Section 401 and/or 404. Contact the unit at 614/265-6346 (John Navarro). 5. Twenty-four (24) hours prior to collection, contact must be made with the local wildlife officer to advise location and duration of sampling.

6. All vouchers are to be deposited at NEORSD or the Cleveland Museum of Biological Diversity.

7. Contact the Division of Wildlife if undocumented aquatic invasive species or new locations for state-listed species are discovered. Contact John Navarro at (614) 265-6346 or john.navarro@dnr.state.oh.us with information.

8. Collection is prohibited in the Killbuck, Big Darby, Little Darby, tributaries to and east branch of the Chagrin River above 1-90, Fish Creek (Williams County) and Division of Wildlife property without explicit written permission from the Division of Wildlife. Sampling is further restricted in streams that may have federally listed mussels and contact with the USFWS is required. See Appendix A of the Ohio Mussel Survey Protocol (April 2014 @ http://wildlife.ohiodnr.gov/licenses-and-permits/specialty-licenses-permits) for locations of federally listed mussels.

9. Permittee must provide an annual electronic report of collecting activities in the Diversity Database Excel spreadsheet format to the Division of Wildlife.

#### Locations of Collecting:

STATEWIDE WITH NOTED EXCEPTIONS

Equipment and method used in collection:

SEINES, TRAP NETS, ELECTROSHOCKER AND HAND COLLECTION.

#### Name and number of each species to be collected:

FISH, MACROINVERTEBRATES, MUSSELS AND AMPHIBIANS AS REQUIRED. DEAD MUSSEL SHELLS MAY ALSO BE COLLECTED BY DOW APPROVED MUSSEL SURVEYORS AS NECESSARY FOR IDENTIFICATION. COMMON FISH SPECIES MAY BE KEPT FOR EDUCATIONAL PURPOSES. NO ENDANGERED SPECIES MAY BE TARGETED AND ALL INCIDENTAL COLLECTIONS MUST BE IMMEDIATELY RELEASED.

RESTRICTIVE DOCUMENTS ACCOMPANYING THIS PERMIT? YES

### NO ENDANGERED SPECIES OR AQUATIC NUISANCE SPECIES MAY BE TAKEN WITHOUT WRITTEN PERMISSION FROM THE CHIEF

### ATTACHMENT

This attachment to permit # <sup>17-258</sup> authorizes the following persons to conduct the activities listed on the permit, within the conditions and restrictions set forth. Each person must carry and exhibit upon request, a copy of the permit and this attachment when conducting any of the listed activities. The person named on the permit assumes full responsibility for the actions of the persons on this list and for completing and submitting all required reports.

| Sub-permittee Name |  |
|--------------------|--|
| JOHN RHOADES       |  |
| THOMAS ZABLOTNY    |  |
| KELSEY AMIDON      |  |
| MARK MATTESON      |  |
| JILLIAN KNITTLE    |  |
| RON MAICHLE        |  |
| DONNA FRIEDMAN     |  |
| ERIC SOEHNLEN      |  |
| DENISE PHILLIPS    |  |
| NICOLE VELEZ       |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |

Appendix H

## References

Chlorophyll a Sampling and Field Filtering Standard Operating Procedure (SOP-EA001-00)

- EPA New England- Region 1. (2005). Standard operating procedure for calibration and field measurement procedures for the YSI Model 6-Series Sondes and Data Logger (Including: temperature, pH, specific conductance, turbidity, dissolved oxygen, chlorophyll, rhodamine WT, ORP, and barometric pressure) (7<sup>th</sup> Revision). North Chelmsford, MA: The Office of Environmental Measurement and Evaluation, Ecosystem Assessment- Ecology Monitoring Team.
- Ohio Environmental Protection Agency. (1987a). Biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters (Updated January 1988; September 1989; November 2006; August 2008; May 2015). Columbus, OH: Division of Water Quality Monitoring and Assessment.
- Ohio Environmental Protection Agency. (1987b). Biological criteria for the protection of aquatic life: Volume III. Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities (Updated September 1989; March 2001; November 2006; August 2008; and September 2015). Columbus, OH: Division of Water Quality Monitoring and Assessment.
- Ohio Environmental Protection Agency. (1997). Draft. Biological Criteria for the Protection of Aquatic Life: Volume IV: Fish and Macroinvertebrate Indicies for Ohio's Lake Erie Nearshore Waters, Harbors, and Lacustuaries. Columbus, OH: Division of Surface Water, Ecological Assessment Unit.
- Ohio Environmental Protection Agency. (2003). *Total Maximum Daily Loads for the Lower Cuyahoga River*. Columbus, OH: Division of Surface Water.
- Ohio Environmental Protection Agency. (2006). Methods for assessing habitat in flowing waters: using the Qualitative Habitat Evaluation Index (QHEI). (Ohio EPA Technical Bulletin EAS/2006-06-1). Columbus, OH: Division of Surface Water; Division of Ecological Assessment Section.
- Ohio Environmental Protection Agency. (2010). *Methods of Assessing Habitat in Lake Erie Shoreline Waters Using the Qualitative Habitat Evaluation Index (QHEI) Approach (Version 2.1).* Columbus, OH: Division of Surface Water.
- Ohio Environmental Protection Agency. (2012a). *Field Evaluation Manual for Ohio's Primary Headwater Habitat Stream.* Columbus, OH: Division of Surface Water; Division of Ecological Assessment Section.
- Ohio Environmental Protection Agency. (2012b). *Ohio 2012 Integrated Water Quality Monitoring and Assessment Report.* Columbus, Ohio: Division of Surface Water.

- Ohio Environmental Protection Agency. (2014). State of Ohio Water Quality Standards Ohio Administrative Code Chapter 3745-1 (Revision: July 1, 2014; Effective October 1, 2014). Columbus, OH: Division of Surface Water; Standards and Technical Support Section.
- Ohio Environmental Protection Agency. (2015a). Surface Water Field Sampling Manual for water quality parameters and flow. Columbus, Ohio: Division of Surface Water.
- Ohio Environmental Protection Agency. (2015b). *Proposed Stream Nutrient Assessment Procedure*. Columbus, OH: Division of Surface Water, Ohio EPA Nutrients Technical Advisory Group.