Green Infrastructure Grants Program for the Combined Sewer Collection System Area

Pre-proposal Workshop for the 2024 GI Grant Funding Round
Jessica Cotton

GRANT PROGRAMS ADMINISTRATOR – WATERSHED PROGRAMS DEPARTMENT
Agenda

• District and Green Infrastructure Grants Program Overview – Jessica
• Contract Agreements, Property Ownership – Anka
• Grant Eligibility – Rob
• Grant Submittal of Application – Chris
 • Criteria
 • Technical Requirements
• Awarded Funded Projects Document Submittal Process – Jessica
WHO ARE WE
- Created in 1972 by Court Order
- Servicing all or part of 62 member communities
- 1 million customers
- 90+ billion gallons wastewater treated each year with 3 award winning treatment plants.
- 487 miles of regional streams
GREEN INFRASTRUCTURE GRANTS PROGRAM
OVERVIEW

Jessica S. Cotton, Grant Programs Administrator Watershed Programs Department
Green Infrastructure is an approach to stormwater management

- protects, restores, or mimics the natural water cycle
- increase resiliency of infrastructure by reducing stress on we-weather drainage and collection systems
- increase co-benefits in support of healthy environments and strong communities

The Green Infrastructure Grants Program (GI Grant) focus is funding GIG implementation and long-term maintenance projects to remove stormwater runoff from the combined sewer collection system that protects, preserves, enhance, and restores natural hydrologic functions within the District’s combined sewer service area.

“What we practice at the small scale sets the pattern for the whole system”

- Adrienne Maree Brown
Overview

NATURAL PROCESSES INTACT

NATURAL PROCESSES REMOVED

NATURAL PROCESSES RESTORED

NATURAL PROCESSES RESTORED
Overview

Problem

Solution
Funding options increased 20%

GI Grant Options and what’s new!

• Design–Only (concept)
 • Was $25,000
 • **Now $30,000**

• Design and/or Construction
 • Was $250,000
 • **Now $300,000**
Overview

Terms of Funding

- The GI Grant is exclusively a reimbursement grant
- Reimbursement will be made on project specific invoices as related to the awarded project
- No schedule for Reimbursement
- Typically, around Quarterly Progress Reports are due
<table>
<thead>
<tr>
<th>Funding Round</th>
<th>Award Recommendations Total</th>
<th>Runoff Reduction gallons/year Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014 GIG PROGRAM</td>
<td>$1,746,274</td>
<td>7,138,890</td>
</tr>
<tr>
<td>2016 GIG PROGRAM</td>
<td>$1,974,747</td>
<td>9,658,777</td>
</tr>
<tr>
<td>2018 GIG PROGRAM</td>
<td>$799,130</td>
<td>1,730,668</td>
</tr>
<tr>
<td>2019 GIG PROGRAM</td>
<td>$1,908,361</td>
<td>4,906,083</td>
</tr>
<tr>
<td>2020 GIG PROGRAM</td>
<td>$1,907,656</td>
<td>3,888,596</td>
</tr>
<tr>
<td>2021 GIG PROGRAM</td>
<td>$895,432</td>
<td>2,978,459</td>
</tr>
<tr>
<td>2022 GIG PROGRAM</td>
<td>1,500,000</td>
<td>2,356,946</td>
</tr>
<tr>
<td>2023 GIG PROGRAM</td>
<td>2,125,000</td>
<td>3,620,423</td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td>$12,856,600</td>
<td>32,658,439</td>
</tr>
</tbody>
</table>
Is the project eligible for grant funding through this program?
Determine Project Eligibility

Combine Sewer Area – Purple
Service Area – Blue and including the purple
Determine Project Eligibility

- Applicant must represent
 - Member Community
 - Governmental Entity
 - Non-Profit 501(c)(3)
 - Business working in partnership with their community
- Must be in the Combined Sewer Collection System
- Remove or eliminate stormwater runoff from the combined sewer collection system within the District’s combined sewer service area.

TIP: Use Search Tool on the Combined Sewer Area Map @ Combined Sewer Area (arcgis.com)
Anka Davis

ASSISTANT GENERAL COUNSEL – LEGAL DEPARTMENT
CONTRACTUAL AGREEMENT
• Contracting Process
• Ownership and Partners
• Affidavit of Facts
• Key Contract Provisions
• Legal Review by Attorney Prior to submitting Grant Application
Sewer Types and Function

- Separate Sanitary Sewer
- Separate Storm Sewer
- Combined Sewer
The First Sewers

- During the 1800s, growing cities built storm sewers to prevent street flooding.
- 1880s-90s: Sanitary sewers from houses connected to existing storm drains creating numerous water quality problems.
118 CSO Locations Throughout Combined Sewer Area
Determine Your Eligibility

Infiltration and Inflow (I&I)
Location

Example #1: although in combined area, some storm sewers are separated
Determine Your Eligibility

Location
Example #1

Legend

Combined Sewer Area

Wastewater Service Area
District Wastewater Service Area
Determine Your Eligibility

Location

Example #1
Location

Example #1:
Storm sewers are separate from the combined sewers and discharge to the environment. Project still received a GI Grant because it was able to prove a significant reduction of inflow and infiltration (I & I) into the sanitary system, which is tributary to the combined sewer (e.g., leaky storm and sanitary sewers were adjacent to each other...removing the source of stormwater decreased I&I).
Location

Example #2: although in combined area, storm sewers are separated and directly connected to a watercourse
Determine Your Eligibility

Location

Example #2
Example #2: Storm sewers are separate from the combined sewers and discharge directly to the river. Project was not eligible for a GI Grant because it was NOT able to prove a significant reduction of inflow and infiltration (I & I) into the sanitary system (tributary to the combined sewer).
GREEN INFRASTRUCTURE GRANT PROGRAM
ANNUAL TIMELINE
Request For Proposal

- Approved by Board of Trustees
- RFP is pushed out to the public

Pre-proposal Workshop
We are your resource to prepare for a strong and completed application

- Individual Pre-proposal Meetings
- Site Visits
- Questions
- Review documentation
Application Review Process

- Deadline **September 1**
- Team to review all applications
- Score application with Rubric Criteria
- Reach out to applicants for clarification
Recommended Project is presented to the Board of Trustees

- All applicants are notified
- Agreements are sent out to grantees to review and sign

NOVEMBER/DECEMBER

2020 Providence House West Campus Parking Lot
2050 West 32nd Street

Green Infrastructure Grant Annual Timeline
Funded Projects

- Agreements are signed
- Submit for reimbursement
- Mandatory Kick-off Meeting
 - Overview of expectations

JANUARY/FEBRUARY

2016 Towpath Trail Stage 3
Clark Avenue and Mary Court
GI GRANT APPLICATION OVERVIEW
What makes a GOOD application and project?

Use of Green Infrastructure
Project must demonstrate on-site stormwater control measures using green infrastructure

Striebinger Block Living Wall - Hingetown
Site Control
Applicant must be able to demonstrate permanent control of the project site
Signage
• Sign design
• Signage post
• Guidelines

Annual Inspection
• Individual Awarded Project
• NEORSD

The Applicant

PERMEABLE PAVERS
KEEPING OUR GREAT LAKE GREAT

PERMEABLE PAVERS are more than just a creative parking lot surface, they help the environment. What you are standing on is part of a stormwater management system that includes the pavers, the spaces between each block, the gravel layer underneath, and the soil underneath them. Together, this system protects Lake Erie by filtering stormwater runoff into the ground rather than allowing it to flow into sewers.

Research shows permeable pavers help remove pollutants from surface runoff. Underlying gravel can capture excess nutrients like phosphorus and nitrogen, or heavy metals (zinc or copper) and oils. The filter stone traps these pollutants, which are then broken down by microorganisms as the water filters through.

2023 Karamu House
The Applicant
Keeping our Great Lake great

How a landscape helps protect Lake Erie water quality

When rain hits hard surfaces like roadways, it flows to the lowest point and carries pollution with it to sewers and nearby streams. The greenspace you see here (and the sewers you don't) now work together to keep stormwater out of the sewer system and pollution out of our environment. Here's how the system works:

1. Stormwater on the surrounding area flows over the ground surface to the bioretention area instead of street drains.

2. The bioretention area collects runoff where it slowly seeps into the ground naturally.

3. When the storm exceeds the bioretention area's capacity, excess runoff is conveyed to the street sewer system, which drains to the combined sewer system.

Green infrastructure projects control stormwater before it enters the combined sewer system. This means less pollution in our lake from combined sewer overflows.
QUESTIONS?

• Overview
• Contract
• Eligibility
• Timeline: June – January
• Application
NEORSD Green Infrastructure Grant Program
Preproposal Workshop for the 2024 GI Grants funding round
Christopher Hartman

STORMWATER TECHNICAL SPECIALIST – WATERSHED PROGRAMS DEPARTMENT
GI GRANT APPLICATION, EVALUATION CRITERIA AND TECHNICAL REQUIREMENTS
Project Information

Project Title

Project Address:
ie. 1234 Main St., City, State zip code. Note: If there is no address for the project, please use the adjacent address or the nearest intersection street names.

Project Property Parcel Number(s):

Project Start Date

Project Completion Date
Do not account for the first-year maintenance period

Requested Grant Amount
List each individual GI stormwater control measure (SCM) separately even if there are multiple of the same SCM type. i.e., BIORETENTION 1, BIORETENTION 2, GREEN ROOF, and etc.

<table>
<thead>
<tr>
<th>GI SCM #1:</th>
<th>GI SCM #2:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>GI SCM #3:</td>
<td>GI SCM #4:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>GI SCM #5:</td>
<td>GI SCM #6:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>GI SCM #7:</td>
<td>GI SCM #8:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>GI SCM #9:</td>
<td>GI SCM #10:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OWNERSHIP VERIFICATION

Who is the current owner of the property parcel(s) where the GI Grant project will be located?

Who will be the long term owner of the property parcel(s) where the GI Grant project will be located? Note: This could refer to a different entity than the owner.

Who has long term control of the property parcel(s) where the GI Grant project will be located? This will be the entity who will sign the agreement if awarded grant funding. If different than the long-term owner listed above, please provide supporting documentation.

Browse... No file selected.
Upload
Which best describes your GI project:

1 - A retrofit of existing conditions to incorporate GI features with no net increase in impervious area (Title IV requirements do not apply).

2 - A new or re-development project of at least 0.5-acre disturbance that will result in a net increase of impervious area (Title IV requirements apply).
Because your project does not need to meet the District's Title IV requirements, you must provide applicable information for three (3) separate runs of the USEPA Stormwater Calculator mode (the Calculator). You have the option to forego running the Calculator altogether, and only providing the data the District needs to run the Calculator on your behalf. By following the steps below, you will provide all information the District will need to run the Calculator. However, if you choose to not run the Calculator, please note you will not have all information you need to complete a self-scoring of your application prior to submitting it. There is no penalty to how your application will be scored by the District if you choose to forego running the Calculator.

We will forego running the Calculator and prefer the District complete this on our behalf (select YES or NO):

- **YES** - Items you would not need to submit are identified by a double asterisk (**`).
- **NO** - Please provide all applicable Calculator information described below.
Existing Conditions - determine your average annual runoff for your project area with all existing forest, meadow, lawn, and impervious areas accounted for.

- Upload an Existing Conditions project drawing
 - Browse... No file selected.
 - Upload

- Upload the completed “Existing Conditions Worksheet”, found here
US EPA Stormwater Calculator Worksheet

Existing Conditions

Project Title:

1. Project area size (the total disturbed area or the total drainage area treated, whichever is larger): __________ acres

2. What is the predominant Hydrologic Soil Group (HSG) of the soils in which your stormwater control measures (SCMs) will be situated?
 - [] HSG A - Sand (Low Runoff)
 - [] HSG B - Sandy Loam (Moderately Low)
 - [] HSG C - Clay Loam (Moderately High)
 - [] HSG D - Clay (High Runoff)

3. How was this determined?
 - [] National Stormwater Calculator default value and/or Web Soil Survey
 - [] Field testing verification
 - [] Other (Explain)__________

Northeast Ohio Regional Sewer District
Existing Conditions

Instructions for obtaining your HSG via the Web Soil Survey
https://websoilsurvey.nrcs.usda.gov/app/

1. Select “Start WSS”, and you will default to the “Area of Interest” (AOI) tab.
2. Within the “Area of Interest Interactive Map”, either zoom into your site using the navigation buttons, or enter the project address under the “Address” option under “Quick Navigation” (near top left).
3. Using either of the navigation buttons labeled “AOI” (define by rectangle or by polygon), outline the general boundary of your project area (the area you outlined will revert to a blue hatching).
4. Select the “Soil Map” tab, and on the left of the screen there will be a breakdown of the soil map units within your AOI. Click on the soil map unit name that best represents your project site (there may be more than 1 listed).

4. How fast does rainwater infiltrate pervious areas of your site (if unknown, select the default value provided for your HSG)?
 □ ≤ 0.01 in/hr (HSG D) □ >0.1 to ≤ 1 in/hr (HSG B)
 □ >0.01 to ≤ 0.1 in/hr (HSG C) □ >1 in/hr (HSG A)
 □ Other (provide supporting documentation) ______ in/hr
5. What is the predominant slope of your project area:
 □ Flat (2% Slope) □ Moderately Steep (10% Slope)
 □ Moderately Flat (5% Slope) □ Steep (Above 15% Slope)

6. What is the existing Land Cover breakdown of your project area (must total 100%)?
 ______% Forest (Stands of trees with adequate brush and forested litter cover)
 ______% Meadow (Non-forested natural areas, scrub, and shrub rural vegetation)
 ______% Lawn (Sod lawn, grass, and landscaped vegetation)
 ______% Impervious (Roofs, roads, sidewalks, parking lots and driveways...this should equal 100% less the sum of the above percentages)

NOTE: You will use the same exact data above when you run the USEPA Stormwater Calculator model for “Undeveloped Conditions”. However, your percentage for “Impervious” must be added to and accounted for as “Lawn”. The purpose of this is to mimic the results for a completely undeveloped site.
Existing Conditions

Project size is 1.25-acres

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Current Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Annual Rainfall (inches)</td>
<td>32.32</td>
</tr>
<tr>
<td>Average Annual Runoff (inches)</td>
<td>17.55</td>
</tr>
</tbody>
</table>
Existing Conditions

Existing Conditions average annual runoff (inches)

17.55 inches

Existing Conditions average annual runoff volume (gallons)

\[
\text{Gallons} = (\text{Project size in acres})(\text{inches runoff})(325,851)
\]

\[
1.25 \text{ acres} \times 17.55 \text{ inches} \times 325,851 = 7,148,356 \text{ gallons}
\]
Undeveloped Conditions – determine your average annual runoff for your project area with all existing forest, meadow and lawn areas accounted for, including all existing impervious areas accounted for as “lawn”. Refer to the previously completed “Existing Conditions Worksheet” if running the Calculator (simply account for the impervious area percentage from this worksheet as “lawn”). This Calculator model run is needed to determine your “Flood Resilience” co-benefit score.

Upload the Calculator results for Undeveloped Conditions **
Undeveloped Conditions

All IMPERVIOUS is assumed to be LAWN

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Current Scenario</th>
<th>Baseline Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Annual Rainfall (inches)</td>
<td>32.32</td>
<td>32.32</td>
</tr>
<tr>
<td>Average Annual Runoff (inches)</td>
<td>0.09</td>
<td>17.55</td>
</tr>
</tbody>
</table>
Undeveloped Conditions

Undeveloped Conditions average annual runoff (inches) **

0.09 inches

Undeveloped Conditions average annual runoff volume (gallons) **

Gallons = (Project size in acres)(inches runoff)(325,851)

1.25 acres X 0.09 inches X 325,851 = 36,658 gallons
Proposed GI Conditions - determine your average annual runoff for your project area once all GI SCMs have been accounted for, including all proposed forest, meadow, lawn, and impervious areas.

- Upload the concept plan or the complete set of plan design sheets

- Upload the completed “GI SCM Proposed Conditions Worksheet”, found here
Proposed GI Conditions
Proposed GI Conditions

US EPA Stormwater Calculator Worksheet

GI SCM Proposed Conditions

Project Title:

What is the proposed land cover? **Note:** the footprints of green roof and permeable pavement areas should be accounted for as impervious.

- ____ % *Forest* (Stands of trees with adequate brush and forested litter cover)
- ____ % *Meadow* (Non-forested natural areas, scrub, and shrub rural vegetation)
- ____ % *Lawn* (Sod lawn, grass, and landscaped vegetation)
- ____ % *Impervious* (Roofs, roads, sidewalks, parking lots and driveways...should be 100% less the sum of the above percentages)
List out and identify all proposed individual stormwater control measures (SCMs) for your project. If any type of SCM is proposed in multiple locations, provide a unique identifier for each (Example: 2 bioretention cells could be identified as BC-1 & BC-2). Refer to these identifier numbers on respective SCM worksheets. Use a separate worksheet for each unique SCM identifier.

Example: A project proposes a green roof (GR) and 2 distinct bioretention cells (BC). Flow off the green roof is discharged into one of the bioretention cells.

Example identifiers

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GR</td>
</tr>
<tr>
<td>B</td>
<td>BC-1</td>
</tr>
<tr>
<td>C</td>
<td>B-2</td>
</tr>
</tbody>
</table>

Provide identifiers for your SCMs here:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>
Are you proposing a Treatment Train? (if applicable): Using the letters that correspond to your applicable SCM identifiers, describe how captured runoff is conveyed from one SCM to another (explain what drains to what). In the example above, A drains to B, and C has its own unique drainage area.
Proposed GI Conditions

From Project Information section

List each individual GI stormwater control measure (SCM) separately even if there are multiple of the same SCM type. i.e., BIORETENTION 1, BIORETENTION 2, GREEN ROOF, and etc.

<table>
<thead>
<tr>
<th>GI SCM #1:</th>
<th>GI SCM #2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI SCM #3:</td>
<td>GI SCM #4:</td>
</tr>
<tr>
<td>GI SCM #5:</td>
<td>GI SCM #6:</td>
</tr>
<tr>
<td>GI SCM #7:</td>
<td>GI SCM #8:</td>
</tr>
<tr>
<td>GI SCM #9:</td>
<td>GI SCM #10:</td>
</tr>
</tbody>
</table>

GI SCM Proposed Conditions Worksheet

List out and identify all proposed individual stormwater control measures (SCMs) for your project. If any type of SCM is proposed in multiple locations, provide a unique identifier for each (Example: 2 bioretention cells could be identified as BC-1 & BC-2).

Refer to these identifier numbers on respective SCM worksheets. Use a separate worksheet for each unique SCM identifier.

Example: A project proposes a green roof (GR) and 2 distinct bioretention cells (BC). Flow off the green roof is discharged into one of the bioretention cells.

Example Identifiers

- A. **GR**
- B. **BC-1**
- C. **B-2**

Provide identifiers for your SCMs here:

- A. ___________ F. ___________
- B. ___________ G. ___________
- C. ___________ H. ___________
- D. ___________ I. ___________
- E. ___________ J. ___________
Proposed GI Conditions

Upload a completed worksheet for each proposed GI SCM, found here- please provide the correct SCM ID for each individual SCM listed on the “GI SCM Proposed Conditions Worksheet”, found here, and merge all applicable worksheets into a single PDF file.
Proposed GI Conditions

US EPA Stormwater Calculator Worksheet

Permeable Pavement

SCM ID: ____________

Project Title:

What is the percentage of your project area’s impervious area that will be conveyed to this SCM? Note: the actual footprint of your permeable pavement footprint should be considered impervious; also account for any other impervious areas that are conveyed to the permeable pavement footprint: ____________%

What will be the pavement thickness (maximum of 12")? ____________

What will be the gravel layer thickness (maximum of 36")? ____________

Capture ratio:
• What is the square footage of the SCM? ____________ Sq.Ft. (A)

• How much impervious area is draining to the SCM? ____________ Sq.Ft. (B)

• Calculate your capture ratio \([(A/B) \times 100] = ____________\%

Will pre-treatment of the runoff occur before entering the Permeable Pavement (YES or NO...if yes, please briefly explain)? __________________________
Proposed GI Conditions

1. **Porous Asphalt Pavement**
 - Uncompacted subgrade is critical for proper infiltration.
 - Uniformly graded stone aggregate with 40% void space for stormwater storage and recharge.

2. **Filter Fabric**

3. **Pavement Thickness**

4. **Gravel Layer Thickness**

Northeast Ohio Regional Sewer District
US EPA Stormwater Calculator Worksheet

Street Planters (Bioretention)

SCM ID: _____________

Project Title:

What is the percentage of your project area’s impervious area that will be conveyed to this SCM? ______ %

What is the ponding height (distance from top of mulch to the first overflow...maximum of 24")? ______________

What is the soil media thickness (maximum of 36")? ______________

What is the soil media conductivity (maximum of 20 inches/hour)? ______

- Note: Meeting the soil media specifications in Ohio’s Rainwater & Land Development Manual results in an estimated conductivity of up to 4 in/hr.

What is the gravel bed thickness (maximum of 36")? ______________

Capture ratio:

- What is the square footage of the SCM? ________ Square Feet (A)

- How much impervious area is draining to the SCM? ________ Square Feet (B)

- Calculate your capture ratio [(A/B) x 100] = __________ %

Northeast Ohio Regional Sewer District
Proposed GI Conditions

Street Planter Detail

Bioretention Cell Detail

Northeast Ohio Regional Sewer District
Worksheet for each proposed SCM

US EPA Stormwater Calculator Worksheet

Street Planters (Bioretention)

SCM ID: ____________

Project Title:
What is the percentage of your project area’s impervious area that will be conveyed to this SCM ______ %
What is the ponding height (distance from top of mulch to the first overflow...maximum of 24")? ____________
What is the soil media thickness (maximum of 36")? ____________
What is the soil media conductivity (maximum of 20 inches/hour)? ______
 • Note: Meeting the soil media specifications in Ohio’s Rainwater & Land Development Manual results in an estimated conductivity of up to 4 in/hr
What is the gravel bed thickness (maximum of 36")? ____________
Capture ratio:
 • What is the square footage of the SCM? _______ Square Feet (A)
 • How much impervious area is draining to the SCM? ________ Square Feet (B)
 • Calculate your capture ratio [(A/B) x 100] = ________ %

GI SCM Proposed Conditions Worksheet

List out and identify all proposed individual stormwater control measures (SCMs) for your project. If any type of SCM is proposed in multiple locations, provide a unique identifier for each (Example: 2 bioretention cells could be identified as BC-1 & BC-2). Refer to these identifier numbers on respective SCM worksheets. Use a separate worksheet for each unique SCM identifier.

Example: A project proposes a green roof (GR) and 2 distinct bioretention cells (BC). Flow off the green roof is discharged into one of the bioretention cells.

Example identifiers

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GR</td>
</tr>
<tr>
<td>B</td>
<td>BC-1</td>
</tr>
<tr>
<td>C</td>
<td>B-2</td>
</tr>
</tbody>
</table>

Provide identifiers for your SCMs here:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
</tbody>
</table>
Proposed GI Conditions

Upload the Calculator results for Proposed GI Conditions **

- Forest: 20%
- Meadow: 0%
- Lawn: 15%
- Desert: 0%
- Impervious: 65%

- Disconnection: 0%
- Rain Harvesting: 0%
- Rain Gardens: 0%
- Green Roofs: 0%
- Street Planters: 0%
- Infiltration Baseline: 0%
- Permeable Pavement: 100%

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Current Scenario</th>
<th>Baseline Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Annual Rainfall</td>
<td>32.32</td>
<td>32.32</td>
</tr>
<tr>
<td>Average Annual Runoff</td>
<td>0.02</td>
<td>17.55</td>
</tr>
</tbody>
</table>

Northeast Ohio Regional Sewer District
Proposed GI Conditions

0.02 inches

Gallons = (Project size in acres)(inches runoff)(325,851)

1.25 acres X 0.02 inches X 325,851 = 8,146 gallons
Flood Resiliency Determination

- 2 of the possible 3 points
- The project prevents the post-development average annual runoff from exceeding the pre-development (i.e., undeveloped) average annual runoff, as determined by the USEPA Stormwater Calculator. For the purpose of mimicking an undeveloped pre-development condition, all existing impervious areas must be accounted for as “lawn”

<table>
<thead>
<tr>
<th>Post-development average annual runoff (with all GI SCMs)</th>
<th>Pre-developed average annual runoff (undeveloped conditions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02 inches</td>
<td>0.09 inches</td>
</tr>
</tbody>
</table>

2 points awarded!!!
Stormwater Captured by GI SCMs

- Determine how much runoff volume is removed from the combined sewer system

Post-development average annual runoff (with all GI SCMs) = 0.02 inches
Existing Conditions average annual runoff = 17.55 inches

Gallons = (Project size in acres)(Ex.Cond. inches – w/GI SCMs inches)(325,851)

1.25 acres X (17.55 - 0.02 inches) X 325,851 = 7,140,210 gallons
Which best describes your GI project:

1 - A retrofit of existing conditions to incorporate GI features with no net increase in impervious area (Title IV requirements do not apply).

2 - A new or re-development project of at least 0.5-acre disturbance that will result in a net increase of impervious area (Title IV requirements apply).

-Select One-

Submit
Because your project must comply with the Districts Title IV requirements, you must provide applicable information for four (4) separate runs of the USEPA Stormwater Calculator model (the Calculator). You have the option to forego running the Calculator altogether, and only providing the data the District needs to run the Calculator on your behalf. By following the steps below, you will provide all information the District will need to run the Calculator. However, if you choose to not run the Calculator, please note you will not have all information you need to complete a self-scoring of your application prior to submitting it. There is no penalty to how your application will be scored by the District if you choose to forego running the Calculator.

We will forego running the Calculator and prefer the District complete this on our behalf (select YES or NO):

- YES - Items you would not need to submit are identified by a double asterisk (**).
- NO – Please provide all applicable Calculator information described below.

EXISTING CONDITIONS
UNDEVELOPED CONDITIONS
PROPOSED TITLE IV CONDITIONS
PROPOSED GI CONDITIONS
Proposed Title IV Conditions - determine your average annual runoff for your project area’s proposed improvements, including all proposed forest, meadow, lawn, and impervious areas. This will be used to determine the estimated amount of stormwater runoff that will result without the benefit of any GI SCMs (Title IV only requires the rate of discharge be managed, not the volume).

* Upload the concept plan or the complete set of plan design sheets
 NOTE: Although these sheets will show proposed GI SCMs, this run of the Calculator model will assume they are not included

* Upload the completed “Title IV Proposed Conditions Worksheet”, found here
Proposed Title IV Conditions

US EPA Stormwater Calculator Worksheet

Title IV Proposed Conditions

Project Title:

What is the proposed land cover?

____% Forest (Stands of trees with adequate brush and forested litter cover)

____% Meadow (Non-forested natural areas, scrub, and shrub rural vegetation)

____% Lawn (Sod lawn, grass, and landscaped vegetation)

____% Impervious (Roofs, roads, sidewalks, parking lots and driveways...should be 100% less the sum of the above percentages)

NOTE: NEORSD’s Title IV Code only requires the project to manage the rate of stormwater discharge (e.g., slow release of captured volume), not the volume discharged. Therefore, it can be assumed the proposed land covers summarized above will result in the maximum volume of stormwater runoff even if the stormwater is conveyed to a detention facility prior to discharge. Your subsequent run of the USEPA Stormwater Calculator model using the “GI SCM Proposed Conditions Worksheet” will account for volume-reducing green infrastructure SCMs.
Proposed Title IV Conditions

- Increase in impervious area triggers the need to meet Title IV requirements
- Represents full site improvements, but ignores impact of any GI SCMs

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Current Scenario</th>
<th>Baseline Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Annual Rainfall (inches)</td>
<td>32.32</td>
<td>32.32</td>
</tr>
<tr>
<td>Average Annual Runoff (inches)</td>
<td>24.23</td>
<td>17.55</td>
</tr>
</tbody>
</table>

Northeast Ohio Regional Sewer District
Proposed Title IV Conditions

- We assumed 50% of the proposed impervious area would be permeable pavers.
Flood Resiliency Determination

• 2 of the possible 3 points
• The project prevents the post-development average annual runoff from exceeding the pre-development (i.e., undeveloped) average annual runoff, as determined by the USEPA Stormwater Calculator. For the purpose of mimicking an undeveloped pre-development condition, all existing impervious areas must be accounted for as “lawn”

<table>
<thead>
<tr>
<th>Post-development average annual runoff (with all GI SCMs)</th>
<th>Pre-developed average annual runoff (undeveloped conditions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.12 inches</td>
<td>0.09 inches</td>
</tr>
</tbody>
</table>

2 points not awarded
Stormwater Captured by GI SCMs

- Determine how much runoff volume is removed from the combined sewer system (fully improved site with and without GI SCMs)

Post-development average annual runoff (with all GI SCMs):

12.12 inches

Post-development average annual runoff (without GI SCMs):

24.23 inches

\[
\text{Gallons} = (\text{Project size in acres})(\text{without GI inches} - \text{with GI SCMs inches})(325,851)
\]

\[
1.25 \text{ acres} \times (24.23 - 12.12 \text{ inches}) \times 325,851 = 4,932,570 \text{ gallons}
\]
Project Narrative

Project Schedule

- **Project Introduction**

 Introduction (500 word maximum) Provide a brief introduction to the organization that would be delivering the proposed GIG project.

- **Project Summary**

 Describe the GIG project and include the following information:

 - Objectives and expected outcomes
 - Proposed project area improvements, and the anticipated function(s) of the GI SCMs
 - Expected benefits (i.e., amount of treated impervious area, estimated volume of stormwater captured annually, etc.). **NOTE:** You are not required to run the USEPA Stormwater Calculator model, so only include results here as applicable.
 - Any additional details that make the project unique (e.g., nearby complimentary projects, how the project supports local planning goals, etc.)
Upload a detailed schedule of remaining work to be done (i.e., project tasks and deliverables), up to and including the end of the first-year maintenance period.
A building permit from the local jurisdiction typically includes:

- Zoning review
- Public Works review (Water Pollution Control in Cleveland)
- Traffic review
- Planning review
- Councilperson review
- NEORSD review

For projects situated in Cleveland:

- Water Pollution Control (WPC)
- Neighborhood Planning Review Committees
- City of Cleveland Planning Commission
- Coordination with FirstEnergy or Cleveland Public Power
- Traffic/Transportation
- Tree preservation plan

Other Permits:

- Temporary ROW permit
- Sidewalk permit
- Floodplain permit
- Ohio EPA NPDES CGP
Project Team

- List all team members and their professional credentials

For each team member, describe and/or provide a list of completed GI projects they have been involved in, and briefly summarize their role in each project.
Project Photos

Upload current photos of the project site. Please provide photos as PDFs and merge all photos into a single PDF file prior to uploading.

Provide proposed project renderings (if available)
Ability to Provide Long-Term Maintenance

Describe who owns the land (current and/or future) and who will have long-term control of the property and therefore be responsible for short and long-term maintenance of the GI SCMs (the party who will sign

Provide a summary of anticipated maintenance needs for proposed GI SCMs (i.e., annual hours, necessary skills and equipment, etc.)
<table>
<thead>
<tr>
<th>Bioretention Cell Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual hours</td>
</tr>
<tr>
<td>Skills needed</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Equipment needed</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
If volunteers will be relied on for on-going maintenance of the GI SCMs, describe your plan to recruit, train and sustain a volunteer base. If there is an existing volunteer program, please describe past success stories. Do you plan to establish a new volunteer program? How will volunteers be recruited/replenished? What is your plan to train the volunteers on GI SCM maintenance?

* Provide the proposed Operation and Maintenance Plan for the GI SCMs
Proper function of a bioretention cell is dependent on the planting soil continuing to drain as well as plant survival. Maintaining the pretreatment area and minimizing erosion will extend the function of the planting soil.

<table>
<thead>
<tr>
<th>Design Feature</th>
<th>Frequency of Inspection (minimum)</th>
<th>What to Look For</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Easement</td>
<td>Annually</td>
<td>• Ensure there are no encroachments into or damage to the access easement that would prohibit equipment from reaching the cell to perform maintenance activities</td>
</tr>
<tr>
<td>Plant Stock</td>
<td>First growing season and during extended drought periods – every 2 weeks</td>
<td>• General health of the plants – water as necessary</td>
</tr>
<tr>
<td></td>
<td>Every 2 months during growing season</td>
<td>• Establishment of weeds and volunteer plants – remove as necessary</td>
</tr>
<tr>
<td></td>
<td>Late Winter</td>
<td>• Inspect plants for the need to prune and/or split for appearance</td>
</tr>
<tr>
<td>Mulch Layer</td>
<td>Annually</td>
<td>• Ensure top layer of mulch is loose, free of accumulated debris and has a minimum 3-inch uniform depth</td>
</tr>
<tr>
<td>Planting Soil</td>
<td>Annually</td>
<td>• Maintain a pH of 5.2 – 7.0
• Ensure the top of the soil layer is not clogged with debris/sediments. The presence of standing water or saturated soil 40 hours following a rain event is an indication the soil mix may be clogged and may need to be replaced.</td>
</tr>
</tbody>
</table>
Education and Co-Benefits

- Describe the proposed placement of on-site educational signage in relation to the location of GI SCMs.
Education and Co-Benefits

* Describe the proposed placement of on-site educational signage in relation to the location of GI SCMs.
Education and Co-Benefits
Describe accessibility by the general public and/or property stakeholders to the GI SCMs, taking into account any site limitations (e.g., limited hours of operation, private property, where SCMs are situated, etc.)
Fill out the co-benefits you believe your project will achieve and provide the suggested supporting documentation:

* Upload the Social Vulnerability Index (SVI) Score of your site:
 To access the SVI map, select this link

* Upload Social Vulnerability Index (SVI) Score Screenshot

HTTPS://WWW.ATSDR.CDC.GOV/PLACEANDHEALTH/SVI/INTERACTIVE_MAP.HTML
SVI score within the project area >0.75: 3 points
SVI score within the project area >0.50 & ≤0.75: 2 points
SVI score within the project area >0.250 & ≤0.50: 1 point
SVI score within the project area ≤0.25: 0 points
Fill out the co-benefits you believe your project will achieve and provide the suggested supporting documentation:

Public access, open space, and recreation:
Describe how public access, open space, and recreation co-benefits will be achieved. Consider how the general public will be able to access your project area and how this will be advertised (properties must be open for a minimum of 7 hours per weekend day or 3 hours per weekday). This can also be achieved by integrating public gathering spaces into project design, by enhancing an existing public space, or by creating new opportunities to socialize, gather, recreate and interact with nature in a publicly accessible space.
Fill out the co-benefits you believe your project will achieve and provide the suggested supporting documentation:
Fill out the co-benefits you believe your project will achieve and provide the suggested supporting documentation:

Community engagement, collaboration and placemaking:
Describe how community engagement, collaboration and placemaking co-benefits will be achieved. In addition to the property owner and technical team, consider including members from the community or property stakeholders on the grant team. Describe your strategy that prioritizes community members’ input throughout the design process, including workshops, design charettes, or other outreach events that aim to integrate the community’s vision and goals into the green infrastructure design.
Fill out the co-benefits you believe your project will achieve and provide the suggested supporting documentation:

GI job training: Describe how GI job training co-benefits will be achieved. Consider providing a long-term green infrastructure job training program or by serving as a training site for trainees learning about the design, construction, maintenance, or monitoring of green infrastructure. Projects that select this co-benefit must be open and accessible to trainees and their instructors for a minimum of 16 hours per year (during business hours).
Fill out the co-benefits you believe your project will achieve and provide the suggested supporting documentation:

Potable water supply:
Describe how water supply co-benefits will be achieved by collecting, treating, and using rainwater or stormwater to satisfy non-potable water demands (e.g., landscape irrigation, toilet flushing, etc.). Harvesting tanks must be able to hold the volume equal to a 1-inch rainfall from the contributing drainage area, and supporting calculations confirming there is a demand for this volume every week for at least 50% of the calendar year must be provided.
1-inch of rainfall on a 1000 square foot roof will yield approximately 600 gallons of runoff.
Urban Heat Resilience:
Urban Heat Resilience co-benefits can be achieved if any portion of your project area falls within a priority heat resilience area recognized by the District, by achieving a 10% net decrease in impervious surfaces, or by achieving a net increase of at least 3 shade trees from the District’s approved list. To access the priority urban heat resilience map, select this link: (placeholder for map link and instructions to upload a screenshot) UPLOAD (required if selecting this co-benefit)
Urban Heat Resilience:
Urban Heat Resilience co-benefits can be achieved if any portion of your project area falls within a priority heat resilience area recognized by the District, by achieving a 10% net decrease in impervious surfaces, or by achieving a net increase of at least 3 shade trees from the District’s approved list. To access the priority urban heat resilience map, select this link: (placeholder for map link and instructions to upload a screenshot) UPLOAD (required if selecting this co-benefit)

TREE SELECTION GUIDE
A LIST OF APPROPRIATE TREES FOR URBAN AND SUBURBAN AREAS

CLEVELAND TREE PLAN 2020: TREE SELECTION GUIDE 26

<table>
<thead>
<tr>
<th>Large Trees 50' and over</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Name</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Abies nordmanniana</td>
</tr>
<tr>
<td>Acer x freemanii [Autumn Blaze]*</td>
</tr>
<tr>
<td>Acer rubrum</td>
</tr>
<tr>
<td>Aesculus flava</td>
</tr>
<tr>
<td>Betula nigra [Heritage]</td>
</tr>
<tr>
<td>Betula nigra [City Slicker]</td>
</tr>
<tr>
<td>Cedrus libani var. stenocoma</td>
</tr>
</tbody>
</table>
Urban Flooding Resilience:

Urban Flooding Resilience co-benefits can be achieved if any portion of your project area falls within a priority sewershed recognized by the District. To access the priority sewershed map, select this link: (placeholder for map link and instructions to upload a screenshot) UPLOAD (required if selecting this co-benefit)
Urban Flooding Resilience:
Urban Flooding Resilience co-benefits can be achieved if any portion of your project area falls within a priority sewershed recognized by the District. To access the priority sewershed map, select this link: (placeholder for map link and instructions to upload a screenshot) UPLOAD (required if selecting this co-benefit)
Biodiversity:
Describe how biodiversity co-benefits will be achieved. Consider the project’s landscape planting plan and how it is integrated into the design through features such as native pollinator gardens, habitat connectivity plans, and increased tree canopy. Also consider identifying specific native species that the project is designed for and providing a plant palette selected to attract that species.
Provide the requested grant amount (account for design and/or construction + 1st-year maintenance expenses; maximum of $300,000*):
The District will consider requests that exceed the maximum on a case-by-case basis.

Provide the total cost to design and/or construct eligible expenses related to the GI SCMs of your project. If your project does not involve improvements beyond what is necessary to construct functional GI SCMs (for example, you are converting an existing asphalt parking lot to permeable pavement), your GI SCM project cost will likely equal your total project cost. However, if your project involves the construction of additional improvements with ineligible expenses (e.g., a new apartment building with a permeable parking lot), we only want to know the portion of your budget earmarked for the GI SCM (the permeable parking lot in this example), and not the entire property improvements:

If your requested grant amount is less than your GI SCM project cost, describe the sources of funding that will make up the difference to cover the full cost of GI SCMs (including in-kind), and provide verification when these funds were secured, or the estimated time frame they will be secured.

NOTE: All funding must be secured by 12-31-23

Provide any applicable supporting documents

[Upload] No file selected.
Grant funds can be used to cover all project costs related to the construction of the proposed green infrastructure facilities. Grant funds cannot be used to pay for non-green infrastructure project elements, such as play equipment or furnishings.

Eligible and ineligible costs may include, but are not limited to:

Eligible Costs
- Bid items related to green infrastructure
 - BMPs (surface and subsurface):
 - Soil
 - Aggregates (stone, gravel, sand, etc.)
 - Plants
 - Trees
 - Concrete
 - Excavation
 - Grading
 - Underdrains
 - Irrigation
Ineligible Costs

- On-going maintenance beyond first-year maintenance (including any contractor maintenance period)
- Purchase of maintenance equipment (e.g., special snowplow for pavers). Up to $500 of first-year maintenance funding can be allocated for the purchase of maintenance-related equipment, subject to District approval prior to purchase for reimbursement.
- Non-green infrastructure components, including by not limited to:
 - Decorative items
 - Benches
 - Play equipment
 - Lighting
- Structural improvements to support green roof systems (i.e., rafters & trusses)
- Monitoring or research
- Land acquisition costs
Describe specifically what your requested GI Grant Program funding will be used for

Word count 0 of 500

Provide your detailed design and/or construction budget:

Provide your detailed maintenance budget (NOTE: provide the 1st-year budget separate from the long-term maintenance budget. The long-term maintenance budget should reflect the average annual cost over the following 10 years):
<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Unit</th>
<th>Detail 1</th>
<th>Detail 2</th>
<th>Detail 3</th>
<th>Detail 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Educational Signs</td>
<td>2</td>
<td>EA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Conditions & Mobilization, asphalt cemc</td>
<td>1</td>
<td>LS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWPP</td>
<td>1</td>
<td>LS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downspout disconnection (external)</td>
<td>1</td>
<td>LS</td>
<td>$1,800.00</td>
<td>$1,800.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downspout disconnection (internal to building)</td>
<td>1</td>
<td>LS</td>
<td>$2,785.00</td>
<td>$2,785.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storm sewer connection to 185TH existing sewers</td>
<td>1</td>
<td>LS</td>
<td>$2,875.00</td>
<td>$2,875.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underground Storage with gravel</td>
<td>1</td>
<td>LS</td>
<td>$28,500.00</td>
<td>$28,500.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boreention (on top of underground storage)</td>
<td>779</td>
<td>SF</td>
<td>$25.00</td>
<td>$19,462.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excavation and Embankment, including all Excavation Hauled</td>
<td>1</td>
<td>LS</td>
<td>$7,650.00</td>
<td>$7,650.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt Pavement with stone</td>
<td>2023</td>
<td>SY</td>
<td>$32.00</td>
<td>$64,743.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete Walk</td>
<td>500</td>
<td>SF</td>
<td>$6.00</td>
<td>$3,000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete Curb Stop</td>
<td>42</td>
<td>EA</td>
<td>$90.00</td>
<td></td>
<td></td>
<td>$3,780.00</td>
</tr>
<tr>
<td>ADA Signage & Handicap Marker</td>
<td>2</td>
<td>EA</td>
<td>$200.00</td>
<td></td>
<td></td>
<td>$400.00</td>
</tr>
<tr>
<td>Parking Lot Markings</td>
<td>1</td>
<td>LS</td>
<td>$950.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete drive apron</td>
<td>2</td>
<td>EA</td>
<td>$2,500.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columns</td>
<td>10</td>
<td>EA</td>
<td>$600.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fencing - Privacy</td>
<td>96</td>
<td>LF</td>
<td>$55.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fencing - parking lot</td>
<td>230</td>
<td>LF</td>
<td>$40.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscaping</td>
<td>1</td>
<td>LS</td>
<td>$5,746.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lighting</td>
<td>2</td>
<td>EA</td>
<td>$3,500.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contingency (20%)</td>
<td>1</td>
<td>LS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design & CA Support Services, including survey, design, calculations, interpretation sign design, one public O&M session, and as built and review with the District</td>
<td>1</td>
<td>LS</td>
<td></td>
<td>$58,765.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permits (2%)</td>
<td>1</td>
<td>LS</td>
<td>$3,654.13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Requested construction items for Grant (items in green)

NEORSD GIG Grant Request

PROJECT COSTS SUBTOTAL $281,667.07

Northeast Ohio Regional Sewer District
NEORSD GI Grant Document Submittal Process

Jessica S. Cotton, Grant Programs Administrator
The Green Infrastructure Grant Program document submittal process is required

3 options
GI Grant Program Important Dates

• RFP 2023 GI Grant Funding Round
 • June 23rd

• Pre-application Meetings (HIGHLY RECOMMENDED)
 • July/August
 • An opportunity to meet with applicants to discuss projects prior to submission

• Application Submission Deadline
 • September 1, 2023
 • GI Grant Application Portal

• Project Reviewing Period /Notifications to Applicants
 • October and November
Let’s look at the NEORSD GI Grant Website
Questions for the Presenters?

- Jessica Cotton, Grant Programs Administrator
 - CottonJ@neorsd.org

- Chris Hartman, Stormwater Technical Specialist
 - HartmanC@neorsd.org

- Anka Davis, Assistant General Counsel
 - DavisA@neorsd.org

- Robert Stoerkel, Community Discharge Permit Program Specialist
 - StoerkelR@neorsd.org
Jessica S. Cotton, GISP, GIP
Grant Programs Administrator (GIG Point of Contact)
216.881.6600 x6458
CottonJ@neorsd.org

Christopher Hartman, CPESC, CPSWQ, CESSWI
Stormwater Technical Specialist
216.881.6600 x6656
HartmanC@neorsd.org

Thank you